skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Olson, Madison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a 23Na nuclear spin dynamics model for interpreting nuclear magnetic resonance (NMR) spin-lattice relaxation and central linewidth data in the invert glass system Na4P2S7-xOx, 0 ≤ x ≤ 7. The glassy nature of this material results in variations in local Na+ cation environments that may be described by a Gaussian distribution of activation energies. A consistent difference between the mean activation energies determined by NMR and DC conductivity measurements was observed, and interpreted using a percolation theory model. From this, the Nasingle bondNa coordination number in the sodium cation sublattice was obtained. These values were consistent with jumps through tetrahedral faces of the sodium cages for the sulfur rich glasses, x < 5, consistent with proposed models of their short range order (SRO) structures. From NMR spin-echo measurements, we determined the Nasingle bondNa second moment M2 resulting from the Nasingle bondNa magnetic dipole interaction of nearest neighbors. Values of M2 obtained as a function of sodium number density N were in agreement with models for uniform sodium distribution, indicating that these invert glass systems form so as to maximize the average Nasingle bondNa distance. A simple Coulombic attraction model between Na+ cation and X (=S−, O−) anion was applied to calculate the activation energy. In the range 1.5 ≤ x ≤ 7, an increase in activation energy with increasing oxygen content x occurred, and was consistent with the decrease in average anionic radius, and the increase in Coulombic attraction. For small oxygen additions, 0 ≤ x ≤ 1.5, the suggested minimum at low oxygen concentration seen in the activation energies obtained from DC conductivity data is not evident in the model. 
    more » « less
  2. Na4P2S7-6xO4.62xN0.92x (NaPSON) glassy solid electrolytes (GSEs) were prepared and tested for their electrochemical properties and processability into thin films. The x = 0.2 composition (NaPSON-2) was found to be highly conducting, non-crystallizable, largely stable against Na-metal and supports symmetric cell cycling up to >100 µA cm-2 without shorting and for these reasons was processed into thin films drawn to 50 m and tested in symmetric and asymmetric cells. Measurements of the sodium ion conductivity using symmetric cells demonstrated that the conductivity of NaPSON-2 was unchanged by film forming. Galvanostatic cycling at 5 A cm-2 of 1.3 mm NaPSON-2 showed stability over 450 hours, while cycling a 50 m thin film showed a very slow growth in the resistance. Cyclic voltammetry and x-ray photoelectron spectroscopy of the NaPSON-2 thin film GSE revealed that it did not react with Na-metal at its surface, but rather in the bulk of the film, showing S, Na2S, and Na3P reaction products. The source of the surface stability was determined to be the preferential segregation of trigonally coordinated nitrogen. These low-cost and easily processed NaPSON GSEs provide a system of materials which could provide for significantly lower cost higher energy density grid-scale batteries. 
    more » « less