skip to main content

Search for: All records

Creators/Authors contains: "Parotto, Paolo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 16, 2023
  2. Free, publicly-accessible full text available May 16, 2023
  3. Free, publicly-accessible full text available February 1, 2023
  4. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    The Beam Energy Scan program at the Relativistic Heavy Ion Collider (RHIC) is searching for the QCD critical point. The main signal for the critical point is the kurtosis of the distribution of proton yields obtained on an event by event basis where one expects a peak at the critical point. However, its exact behavior is still an open question due to out-of-equilibrium effects and uncertainty in the equation of state. Here we use a simplistic hydrodynamic model that enforces strangeness-neutrality, selecting trajectories that pass close to the critical point. We vary the initial conditions to estimate the effect of out-of-equilibrium hydrodynamics on the kurtosis signal.
    Free, publicly-accessible full text available January 1, 2023
  5. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    The Taylor expansion approach to the equation of state of QCD at finite chemical potential struggles to reach large chemical potential μ B . This is primarily due to the intrinsic diffculty in precisely determining higher order Taylor coefficients, as well as the structure of the temperature dependence of such observables. In these proceedings, we illustrate a novel scheme [1] that allows us to extrapolate the equation of state of QCD without suffering from the poor convergence typical of the Taylor expansion approach. We continuum extrapolate the coefficients of our new expansion scheme and show the thermodynamic observables up to μ B / T ≤ 3.5.
    Free, publicly-accessible full text available January 1, 2023
  6. David, G. ; Garg, P. ; Kalweit, A. ; Mukherjee, S. ; Ullrich, T. ; Xu, Z. ; Yoo, I.-K. (Ed.)
    We investigate the chemical freeze-out in heavy-ion collisions (HICs) and the impact of the hadronic spectrum on thermal model analyses [1, 2]. Detailed knowledge of the hadronic spectrum is still an open question, which has phenomenological consequences on the study of HICs. By varying the number of resonances included in Hadron Resonance Gas (HRG) Model calculations, we can shed light on which particles may be produced. Furthermore, we study the influence of the number of states on the so-called two flavor freezeout scenario, in which strange and light particles can freeze-out separately. We consider results for the chemical freeze-out parameters obtained from thermal model fits and from calculating net-particle fluctuations. We will show the effect of using one global temperature to fit all particles and alternatively, allowing particles with and without strange quarks to freeze-out separately.
    Free, publicly-accessible full text available January 1, 2023
  7. Free, publicly-accessible full text available January 1, 2023