skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Passonneau, RJ"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Automated methods are becoming increasingly used to support formative feedback on students’ science explanation writing. Most of this work addresses students’ responses to short answer questions. We investigate automated feedback on students’ science explanation essays, which discuss multiple ideas. Feedback is based on a rubric that identifies the main ideas students are prompted to include in explanatory essays about the physics of energy and mass. We have found that students revisions generally improve their essays. Here, we focus on two factors that affect the accuracy of the automated feedback. First, learned representations of the six main ideas in the rubric differ with respect to their distinctiveness from each other, and therefore the ability of automated methods to identify them in student essays. Second, sometimes a student’s statement lacks sufficient clarity for the automated tool to associate it more strongly with one of the main ideas above all others. 
    more » « less
    Free, publicly-accessible full text available July 15, 2025
  2. Hoadley, C ; Wang, XC (Ed.)
    The present study examined teachers’ conceptualization of the role of AI in addressing inequity. Grounded in speculative design and education, we examined eight secondary public teachers’ thinking about AI in teaching and learning that may go beyond present horizons. Data were collected from individual interviews. Findings suggest that not only equity consciousness but also present engagement in a context of inequities were crucial to future dreaming of AI that does not harm but improve equity. 
    more » « less
    Free, publicly-accessible full text available June 13, 2025
  3. Hoadley, C ; Wang, XC (Ed.)
    In this paper, we present a case study of designing AI-human partnerships in a realworld context of science classrooms. We designed a classroom environment where AI technologies, teachers and peers worked synergistically to support students’ writing in science. In addition to an NLP algorithm to automatically assess students’ essays, we also designed (i) feedback that was easier for students to understand; (ii) participatory structures in the classroom focusing on reflection, peer review and discussion, and (iii) scaffolding by teachers to help students understand the feedback. Our results showed that students improved their written explanations, after receiving feedback and engaging in reflection activities. Our case study illustrates that Augmented Intelligence (USDoE, 2023), in which the strengths of AI complement the strengths of teachers and peers, while also overcoming the limitations of each, can provide multiple forms of support to foster learning and teaching. 
    more » « less
    Free, publicly-accessible full text available June 13, 2025
  4. Hoadley, C ; Wang, XC (Ed.)
    Eighth grade students received automated feedback from PyrEval - an NLP tool - about their science essays. We examined essay quality change when revised. Regardless of prior physics knowledge, essay quality improved. Grounded in literature on AI explainability and trust in automated feedback, we also examined which PyrEval explanation predicted essay quality change. Essay quality improvement was predicted by high- and medium-accuracy feedback. 
    more » « less
    Free, publicly-accessible full text available June 13, 2025
  5. Hoadley, C ; Wang, XC (Ed.)
    Helping students learn how to write is essential. However, students have few opportunities to develop this skill, since giving timely feedback is difficult for teachers. AI applications can provide quick feedback on students’ writing. But, ensuring accurate assessment can be challenging, since students’ writing quality can vary. We examined the impact of students’ writing quality on the error rate of our natural language processing (NLP) system when assessing scientific content in initial and revised design essays. We also explored whether aspects of writing quality were linked to the number of NLP errors. Despite finding that students’ revised essays were significantly different from their initial essays in a few ways, our NLP systems’ accuracy was similar. Further, our multiple regression analyses showed, overall, that students’ writing quality did not impact our NLP systems’ accuracy. This is promising in terms of ensuring students with different writing skills get similarly accurate feedback. 
    more » « less
    Free, publicly-accessible full text available June 13, 2025