skip to main content

Search for: All records

Creators/Authors contains: "Pau, Stephanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding and predicting the relationship between leaf temperature ( T leaf ) and air temperature ( T air ) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime T leaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below T air at higher temperatures (i.e., > ∼25–30°C) leading to slopes <1 in T leaf / T air relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature ( T can ) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to T can / T air slopes >1 and hystereticmore »behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the T can / T air relationship. Canopy structure also plays an important role in T can dynamics. Future climate warming is likely to lead to even greater T can , with attendant impacts on forest carbon cycling and mortality risk.« less
  2. Abstract

    Understanding spatial and temporal variation in plant traits is needed to accurately predict how communities and ecosystems will respond to global change. The National Ecological Observatory Network’s (NEON’s) Airborne Observation Platform (AOP) provides hyperspectral images and associated data products at numerous field sites at 1 m spatial resolution, potentially allowing high‐resolution trait mapping. We tested the accuracy of readily available data products of NEON’s AOP, such as Leaf Area Index (LAI), Total Biomass, Ecosystem Structure (Canopy height model [CHM]), and Canopy Nitrogen, by comparing them to spatially extensive field measurements from a mesic tallgrass prairie. Correlations with AOP data products exhibited generally weak or no relationships with corresponding field measurements. The strongest relationships were between AOP LAI and ground‐measured LAI (r = 0.32) and AOP Total Biomass and ground‐measured biomass (r = 0.23). We also examined how well the full reflectance spectra (380–2,500 nm), as opposed to derived products, could predict vegetation traits using partial least‐squares regression (PLSR) models. Among all the eight traits examined, only Nitrogen had a validation of more than 0.25. For all vegetation traits, validation ranged from 0.08 to 0.29 and the range of the root mean square error of prediction (RMSEP) was 14–64%. Our results suggest that currently available AOP‐derivedmore »data products should not be used without extensive ground‐based validation. Relationships using the full reflectance spectra may be more promising, although careful consideration of field and AOP data mismatches in space and/or time, biases in field‐based measurements or AOP algorithms, and model uncertainty are needed. Finally, grassland sites may be especially challenging for airborne spectroscopy because of their high species diversity within a small area, mixed functional types of plant communities, and heterogeneous mosaics of disturbance and resource availability. Remote sensing observations are one of the most promising approaches to understanding ecological patterns across space and time. But the opportunity to engage a diverse community of NEON data users will depend on establishing rigorous links with in‐situ field measurements across a diversity of sites.

    « less
  3. Abstract

    Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community‐level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best‐fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koaandMetrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community‐level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climatemore »change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.

    « less
  4. Summary

    Canopy temperatureTcanis a key driver of plant function that emerges as a result of interacting biotic and abiotic processes and properties. However, understanding controls onTcanand forecasting canopy responses to weather extremes and climate change are difficult due to sparse measurements ofTcanat appropriate spatial and temporal scales. Burgeoning observations ofTcanfrom thermal cameras enable evaluation of energy budget theory and better understanding of how environmental controls, leaf traits and canopy structure influence temperature patterns. The canopy scale is relevant for connecting to remote sensing and testing biosphere model predictions. We anticipate that future breakthroughs in understanding of ecosystem responses to climate change will result from multiscale observations ofTcanacross a range of ecosystems.

  5. Abstract Aim

    We may be able to buffer biodiversity against the effects of ongoing climate change by prioritizing the protection of habitat with diverse physical features (high geodiversity) associated with ecological and evolutionary mechanisms that maintain high biodiversity. Nonetheless, the relationships between biodiversity and habitat vary with spatial and biological context. In this study, we compare how well habitat geodiversity (spatial variation in abiotic processes and features) and climate explain biodiversity patterns of birds and trees. We also evaluate the consistency of biodiversity–geodiversity relationships across ecoregions.

    Location

    Contiguous USA.

    Time period

    2007–2016.

    Taxa studied

    Birds and trees.

    Methods

    We quantified geodiversity with remotely sensed data and generated biodiversity maps from the Forest Inventory and Analysis and Breeding Bird Survey datasets. We fitted multivariate regressions to alpha, beta and gamma diversity, accounting for spatial autocorrelation among Nature Conservancy ecoregions and relationships among taxonomic, phylogenetic and functional biodiversity. We fitted models including climate alone (temperature and precipitation), geodiversity alone (topography, soil and geology) and climate plus geodiversity.

    Results

    A combination of geodiversity and climate predictor variables fitted most forms of bird and tree biodiversity with < 10% relative error. Models using geodiversity and climate performed better for local (alpha) and regional (gamma) diversity than for turnover‐based (beta) diversity. Amongmore »geodiversity predictors, variability of elevation fitted biodiversity best; interestingly, topographically diverse places tended to have higher tree diversity but lower bird diversity.

    Main conclusions

    Although climatic predictors tended to have larger individual effects than geodiversity, adding geodiversity improved climate‐only models of biodiversity. Geodiversity was correlated with biodiversity more consistently than with climate across ecoregions, but models tended to have a poor fit in ecoregions held out of the training dataset. Patterns of geodiversity could help to prioritize conservation efforts within ecoregions. However, we need to understand the underlying mechanisms more fully before we can build models transferable across ecoregions.

    « less
  6. Summary

    Process‐based vegetation models attempt to represent the wide range of trait variation in biomes by grouping ecologically similar species into plant functional types (PFTs). This approach has been successful in representing many aspects of plant physiology and biophysics but struggles to capture biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. Grass‐dominated ecosystems are broadly distributed across all vegetated continents and harbour large functional diversity, yet most Land Surface Models (LSMs) summarise grasses into two generic PFTs based primarily on differences between temperate C3grasses and (sub)tropical C4grasses. Incorporation of species‐level trait variation is an active area of research to enhance the ecological realism of PFTs, which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, and disturbance‐related) of dominant lineages to improve LSM representations. Our method is fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage‐based functional types (LFTs), situated between species‐level trait data and PFT‐level abstractions, thus providing a realistic representation of functional diversity and opening the door to the development of new vegetation models.

  7. Abstract

    During the 21st century, human–environment interactions will increasingly expose both systems to risks, but also yield opportunities for improvement as we gain insight into these complex, coupled systems. Human–environment interactions operate over multiple spatial and temporal scales, requiring large data volumes of multi‐resolution information for analysis. Climate change, land‐use change, urbanization, and wildfires, for example, can affect regions differently depending on ecological and socioeconomic structures. The relative scarcity of data on both humans and natural systems at the relevant extent can be prohibitive when pursuing inquiries into these complex relationships. We explore the value of multitemporal, high‐density, and high‐resolution LiDAR, imaging spectroscopy, and digital camera data from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) for Socio‐Environmental Systems (SES) research. In addition to providing an overview of NEON AOP datasets and outlining specific applications for addressing SES questions, we highlight current challenges and provide recommendations for the SES research community to improve and expand its use of this platform for SES research. The coordinated, nationwide AOP remote sensing data, collected annually over the next 30 yr, offer exciting opportunities for cross‐site analyses and comparison, upscaling metrics derived from LiDAR and hyperspectral datasets across larger spatial extents, and addressingmore »questions across diverse scales. Integrating AOP data with other SES datasets will allow researchers to investigate complex systems and provide urgently needed policy recommendations for socio‐environmental challenges. We urge the SES research community to further explore questions and theories in social and economic disciplines that might leverage NEON AOP data.

    « less
  8. Abstract Issue

    Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity–geodiversity relationships across scales.

    Evidence

    We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) andc. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation.

    Conclusion

    With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity.more »Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity–geodiversity relationships across scales and guide the conservation of nature.

    « less