skip to main content

Search for: All records

Creators/Authors contains: "Pleiss, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the most compelling features of Gaussian process (GP) regression is its ability to provide well-calibrated posterior distributions. Recent advances in inducing point methods have sped up GP marginal likelihood and posterior mean computations, leaving posterior covariance estimation and sampling as the remaining computational bottlenecks. In this paper we address these shortcomings by using the Lanczos algorithm to rapidly approximate the predictive covariance matrix. Our approach, which we refer to as LOVE (LanczOs Variance Estimates), substantially improves time and space complexity. In our experiments, LOVE computes covariances up to 2,000 times faster and draws samples 18,000 times faster than existing methods, all without sacrificing accuracy.
  2. One of the most compelling features of Gaussian process (GP) regression is its ability to provide well-calibrated posterior distributions. Recent ad- vances in inducing point methods have sped up GP marginal likelihood and posterior mean computations, leaving posterior covariance estimation and sampling as the remaining computational bottlenecks. In this paper we address these shortcom- ings by using the Lanczos algorithm to rapidly ap- proximate the predictive covariance matrix. Our approach, which we refer to as LOVE (LanczOs Variance Estimates), substantially improves time and space complexity. In our experiments, LOVE computes covariances up to 2,000 times faster and draws samples 18,000 times faster than existing methods, all without sacrificing accuracy.
  3. Recent work shows that inference for Gaussian processes can be performed efficiently using iterative methods that rely only on matrix-vector multiplications (MVMs). Structured Kernel Interpolation (SKI) exploits these techniques by deriving approximate kernels with very fast MVMs. Unfortunately, such strategies suffer badly from the curse of dimensionality. We develop a new technique for MVM based learning that exploits product kernel structure. We demonstrate that this technique is broadly applicable, resulting in linear rather than exponential runtime with dimension for SKI, as well as state-of-the-art asymptotic complexity for multi-task GPs.
  4. Confidence calibration -- the problem of predicting probability estimates representative of the true correctness likelihood -- is important for classification models in many applications. We discover that modern neural networks, unlike those from a decade ago, are poorly calibrated. Through extensive experiments, we observe that depth, width, weight decay, and Batch Normalization are important factors influencing calibration. We evaluate the performance of various post-processing calibration methods on state-of-the-art architectures with image and document classification datasets. Our analysis and experiments not only offer insights into neural network learning, but also provide a simple and straightforward recipe for practical settings: on most datasets, temperature scaling -- a single-parameter variant of Platt Scaling -- is surprisingly effective at calibrating predictions.
  5. We propose Deep Feature Interpolation (DFI), a new data-driven baseline for automatic high-resolution image transformation. As the name suggests, it relies only on simple linear interpolation of deep convolutional features from pre-trained convnets. We show that despite its simplicity, DFI can perform high-level semantic transformations like "make older/younger", "make bespectacled", "add smile", among others, surprisingly well - sometimes even matching or outperforming the state-of-the-art. This is particularly unexpected as DFI requires no specialized network architecture or even any deep network to be trained for these tasks. DFI therefore can be used as a new baseline to evaluate more complex algorithms and provides a practical answer to the question of which image transformation tasks are still challenging in the rise of deep learning.