skip to main content

Search for: All records

Creators/Authors contains: "Pober, Jonathan C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    In a companion paper, we presented bayescal, a mathematical formalism for mitigating sky-model incompleteness in interferometric calibration. In this paper, we demonstrate the use of bayescal to calibrate the degenerate gain parameters of full-Stokes simulated observations with a HERA-like hexagonal close-packed redundant array, for three assumed levels of completeness of the a priori known component of the calibration sky model. We compare the bayescal calibration solutions to those recovered by calibrating the degenerate gain parameters with only the a priori known component of the calibration sky model both with and without imposing physically motivated priors on the gain amplitude solutions and for two choices of baseline length range over which to calibrate. We find that bayescal provides calibration solutions with up to 4 orders of magnitude lower power in spurious gain amplitude fluctuations than the calibration solutions derived for the same data set with the alternate approaches, and between ∼107 and ∼1010 times smaller than in the mean degenerate gain amplitude, on the full range of spectral scales accessible in the data. Additionally, we find that in the scenarios modelled only bayescal has sufficiently high fidelity calibration solutions for unbiased recovery of the 21-cm power spectrum on large spectralmore »scales (k∥ ≲ 0.15 hMpc−1). In all other cases, in the completeness regimes studied, those scales are contaminated.

    « less
  2. ABSTRACT

    High-fidelity radio interferometric data calibration that minimizes spurious spectral structure in the calibrated data is essential in astrophysical applications, such as 21 cm cosmology, which rely on knowledge of the relative spectral smoothness of distinct astrophysical emission components to extract the signal of interest. Existing approaches to radio interferometric calibration have been shown to impart spurious spectral structure to the calibrated data if the sky model used to calibrate the data is incomplete. In this paper, we introduce BayesCal: a novel solution to the sky-model incompleteness problem in interferometric calibration, designed to enable high-fidelity data calibration. The BayesCal data model supplements the a priori known component of the forward model of the sky with a statistical model for the missing and uncertain flux contribution to the data, constrained by a prior on the power in the model. We demonstrate how the parameters of this model can be marginalized out analytically, reducing the dimensionality of the parameter space to be sampled from and allowing one to sample directly from the posterior probability distribution of the calibration parameters. Additionally, we show how physically motivated priors derived from theoretical and measurement-based constraints on the spectral smoothness of the instrumental gains can be usedmore »to constrain the calibration solutions. In a companion paper, we apply this algorithm to simulated observations with a HERA-like array and demonstrate that it enables up to four orders of magnitude suppression of power in spurious spectral fluctuations relative to standard calibration approaches.

    « less
  3. ABSTRACT The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the large-scale structure of the universe before and during the Epoch of Reionization (EoR), when the first ionizing sources formed. Bright radio emission from foreground sources remains the biggest obstacle to detecting the faint 21 cm signal. However, the expected smoothness of foreground power leaves a clean window in Fourier space where the EoR signal can potentially be seen over thermal noise. Though the boundary of this window is well defined in principle, spectral structure in foreground sources, instrumental chromaticity, and choice of spectral weighting in analysis all affect how much foreground power spills over into the EoR window. In this paper, we run a suite of numerical simulations of wide-field visibility measurements, with a variety of diffuse foreground models and instrument configurations, and measure the extent of contaminated Fourier modes in the EoR window using a delay-transform approach to estimate power spectra. We also test these effects with a model of the Hydrogen Epoch of Reionization Array (HERA) antenna beam generated from electromagnetic simulations, to take into account further chromatic effects in the real instrument. We find that foreground power spillover is dominated by the so-called pitchforkmore »effect, in which diffuse foreground power is brightened near the horizon due to the shortening of baselines. As a result, the extent of contaminated modes in the EoR window is largely constant over time, except when the Galaxy is near the pointing centre.« less
  4. Abstract

    Motivated by the desire for wide-field images with well-defined statistical properties for 21 cm cosmology, we implement an optimal mapping pipeline that computes a maximum likelihood estimator for the sky using the interferometric measurement equation. We demonstrate this “direct optimal mapping” with data from the Hydrogen Epoch of Reionization (HERA) Phase I observations. After validating the pipeline with simulated data, we develop a maximum likelihood figure-of-merit for comparing four sky models at 166 MHz with a bandwidth of 100 kHz. The HERA data agree with the GLEAM catalogs to < 10%. After subtracting the GLEAM point sources, the HERA data discriminate between the different continuum sky models, providing most support for the model of Byrne et al. We report the computation cost for mapping the HERA Phase I data and project the computation for the HERA 320-antenna data; both are feasible with a modern server. The algorithm is broadly applicable to other interferometers and is valid for wide-field and noncoplanar arrays.

  5. Abstract We report upper limits on the Epoch of Reionization 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data (∼36 hr of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evidence for systematics that can be largely suppressed with systematic models down to a dynamic range of ∼10 9 with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of Δ 21 2 ≤ ( 30.76 ) 2 mK 2 at k = 0.192 h Mpc −1 at z = 7.9, and also Δ 21 2 ≤ ( 95.74 ) 2 mK 2 at k = 0.256 h Mpc −1 at z = 10.4. At z = 7.9, these limits are the most sensitive to date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier k ∥ modes, at high k ∥ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable subreflections, or residualmore »instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.« less
    Free, publicly-accessible full text available February 1, 2023
  6. Abstract We describe the validation of the HERA Phase I software pipeline by a series of modular tests, building up to an end-to-end simulation. The philosophy of this approach is to validate the software and algorithms used in the Phase I upper-limit analysis on wholly synthetic data satisfying the assumptions of that analysis, not addressing whether the actual data meet these assumptions. We discuss the organization of this validation approach, the specific modular tests performed, and the construction of the end-to-end simulations. We explicitly discuss the limitations in scope of the current simulation effort. With mock visibility data generated from a known analytic power spectrum and a wide range of realistic instrumental effects and foregrounds, we demonstrate that the current pipeline produces power spectrum estimates that are consistent with known analytic inputs to within thermal noise levels (at the 2 σ level) for k > 0.2 h Mpc −1 for both bands and fields considered. Our input spectrum is intentionally amplified to enable a strong “detection” at k ∼ 0.2 h Mpc −1 —at the level of ∼25 σ —with foregrounds dominating on larger scales and thermal noise dominating at smaller scales. Our pipeline is able to detect this amplifiedmore »input signal after suppressing foregrounds with a dynamic range (foreground to noise ratio) of ≳10 7 . Our validation test suite uncovered several sources of scale-independent signal loss throughout the pipeline, whose amplitude is well-characterized and accounted for in the final estimates. We conclude with a discussion of the steps required for the next round of data analysis.« less
  7. Abstract Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of modelmore »incompleteness error.« less