skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Potomkin, Mykhailo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Early stages of metastasis depend on the collective behavior of cancer cells and their interaction with the extracellular matrix (ECM). Cancer cell clusters are known to exhibit higher metastatic potential than single cells. To explore clustering dynamics, we developed a calibrated computational model describing how motile cancer cells biochemically and biomechanically interact with the ECM during the initial invasion phase, including ECM degradation and mechanical remodeling. The model reveals that cluster formation time, size, and shape are influenced by ECM degradation rates and cellular compliance to external stresses (durotaxis). The results align with experimental observations, demonstrating distinct cell trajectories and cluster morphologies shaped by biomechanical parameters. The simulations provide valuable insights into cancer invasion dynamics and may suggest potential therapeutic strategies targeting early-stage invasive cells. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. We analyze a nonlinear partial differential equation system describing the motion of a microswimmer in a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer model is used in which self-propulsion enters the model through the slip velocity on the microswimmer’s surface. The liquid crystal is described using the well-established Beris–Edwards formulation. In previous computational studies, it was shown that the squirmer, regardless of its initial configuration, eventually orients itself either parallel or perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore, the corresponding solution of the coupled nonlinear system converges to a steady state. In this work, we rigorously establish the existence of the steady state and also the finite-time existence for the time-dependent problem in a periodic domain. Finally, we will use a two-scale asymptotic expansion to derive a homogenized model for the collective swimming of squirmers as they reach their steady-state orientation and speed. 
    more » « less
  3. Flagella and cilia are common features of a wide variety of biological cells and play important roles in locomotion and feeding at the microscale. The beating of flagella is controlled by molecular motors that exert forces along the length of the flagellum and are regulated by a feedback mechanism coupled to the flagella deformation. We develop a three-dimensional (3D) flagellum beating model based on sliding-controlled motor feedback, accounting for both bending and twist, as well as differential bending resistances along and orthogonal to the major bending plane of the flagellum. We show that beating is generated and sustained spontaneously for a sufficiently high motor activity through an instability mechanism. Isotropic bending rigidities in the flagellum lead to 3D helical beating patterns. By contrast, anisotropic flagella present a rich variety of wave-like beating dynamics, including both 3D beating patterns as well as planar beating patterns. We show that the ability to generate nearly planar beating despite the 3D beating machinery requires only a modest degree of bending anisotropy, and is a feature observed in many eukaryotic flagella such as mammalian spermatozoa. 
    more » « less
  4. Abstract Microscopic swimmers, both living and synthetic, often dwell in anisotropic viscoelastic environments. The most representative realization of such an environment is water-soluble liquid crystals. Here, we study how the local orientation order of liquid crystal affects the motion of a prototypical elliptical microswimmer. In the framework of well-validated Beris-Edwards model, we show that the microswimmer’s shape and its surface anchoring strength affect the swimming direction and can lead to reorientation transition. Furthermore, there exists a critical surface anchoring strength for non-spherical bacteria-like microswimmers, such that swimming occurs perpendicular in a sub-critical case and parallel in super-critical case. Finally, we demonstrate that for large propulsion speeds active microswimmers generate topological defects in the bulk of the liquid crystal. We show that the location of these defects elucidates how a microswimmer chooses its swimming direction. Our results can guide experimental works on control of bacteria transport in complex anisotropic environments. 
    more » « less
  5. Active particles consume energy stored in the environment and convert it into mechanical motion. Many potential applications of these systems involve their flowing, extrusion, and deposition through channels and nozzles, such as targeted drug delivery and out‐of‐equilibrium self‐assembly. However, understanding their fundamental interactions with flow and boundaries remain incomplete. Herein, experimental and theoretical studies of hydrogen peroxide (H2O2) powered self‐propelled gold–platinum nanorods in parallel channels and nozzles are conducted. The behaviors of active (self‐propelled) and passive rods are systematically compared. It is found that most active rods self‐align with the flow streamlines in areas with high shear and exhibit rheotaxis (swimming against the flow). In contrast, passive rods continue moving unaffected until the flow rate is very high, at which point they also start showing some alignment. The experimental results are rationalized by computational modeling delineating activity and rod‐flow interactions. The obtained results provide insight into the manipulation and control of active particle flow and extrusion in complex geometries. 
    more » « less