skip to main content


Search for: All records

Creators/Authors contains: "Prioleau, Temiloluwa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Objective digital data is scarce yet needed in many domains to enable research that can transform the standard of healthcare. While data from consumer-grade wearables and smartphones is more accessible, there is critical need for similar data from clinical-grade devices used by patients with a diagnosed condition. The prevalence of wearable medical devices in the diabetes domain sets the stage for unique research and development within this field and beyond. However, the scarcity of open-source datasets presents a major barrier to progress. To facilitate broader research on diabetes-relevant problems and accelerate development of robust computational solutions, we provide the DiaTrend dataset. The DiaTrend dataset is composed of intensive longitudinal data from wearable medical devices, including a total of 27,561 days of continuous glucose monitor data and 8,220 days of insulin pump data from 54 patients with diabetes. This dataset is useful for developing novel analytic solutions that can reduce the disease burden for people living with diabetes and increase knowledge on chronic condition management in outpatient settings.

     
    more » « less
  2. Seasonal variations in glycemic trends remain largely unstudied despite the growing prevalence of diabetes. To address this gap, our objective is to investigate temporal changes in glycemic trends by analyzing intensively sampled blood glucose data from 137 patients (ages 2 to 76, primarily type 1 diabetes) over the course of 9 months to 4.5 years. From over 91,000 days of continuous glucose monitor data, we found that glycemic control decreases significantly around the holidays, with the largest decline observed on New Year’s Day among the patients with already poor glycemic control (i.e., <55% time in the target range). We also observed seasonal variations in glycemic trends, with patients having worse glycemic control in the months of November to February (i.e., mid-fall and winter, in the United States), and better control in the months of April to August (i.e., mid-spring and summer). These insights are critical to inform targeted interventions that can improve diabetes outcomes.

     
    more » « less
  3. Blood glucose monitoring is an essential aspect of disease management for individuals with diabetes. Unfortunately, traditional methods require collecting a blood sample and thus are invasive and inconvenient. Recent developments in minimally invasive continuous glucose monitors have provided a more convenient alternative for people with diabetes to track their glucose levels 24/7. Despite this progress, many challenges remain to establish a noninvasive monitoring technique that works accurately and reliably in the wild. This review encompasses the current advancements in noninvasive glucose sensing technology in vivo, delves into the common challenges faced by these systems, and offers an insightful outlook on existing and future solutions. 
    more » « less
  4. Abstract

    Digital biomarkers can radically transform the standard of care for chronic conditions that are complex to manage. In this work, we propose a scalable computational framework for discovering digital biomarkers of glycemic control. As a feasibility study, we leveraged over 79,000 days of digital data to define objective features, model the impact of each feature, classify glycemic control, and identify the most impactful digital biomarkers. Our research shows that glycemic control varies by age group, and was worse in the youngest population of subjects between the ages of 2–14. In addition, digital biomarkers like prior-day time above range and prior-day time in range, as well as total daily bolus and total daily basal were most predictive of impending glycemic control. With a combination of the top-ranked digital biomarkers, we achieved an average F1 score of 82.4% and 89.7% for classifying next-day glycemic control across two unique datasets.

     
    more » « less
  5. The ability to quickly learn fundamentals about a new infectious disease, such as how it is transmitted, the incubation period, and related symptoms, is crucial in any novel pandemic. For instance, rapid identification of symptoms can enable interventions for dampening the spread of the disease. Traditionally, symptoms are learned from research publications associated with clinical studies. However, clinical studies are often slow and time intensive, and hence delays can have dire consequences in a rapidly spreading pandemic like we have seen with COVID-19. In this article, we introduce SymptomID, a modular artificial intelligence–based framework for rapid identification of symptoms associated with novel pandemics using publicly available news reports. SymptomID is built using the state-of-the-art natural language processing model (Bidirectional Encoder Representations for Transformers) to extract symptoms from publicly available news reports and cluster-related symptoms together to remove redundancy. Our proposed framework requires minimal training data, because it builds on a pre-trained language model. In this study, we present a case study of SymptomID using news articles about the current COVID-19 pandemic. Our COVID-19 symptom extraction module, trained on 225 articles, achieves an F1 score of over 0.8. SymptomID can correctly identify well-established symptoms (e.g., “fever” and “cough”) and less-prevalent symptoms (e.g., “rashes,” “hair loss,” “brain fog”) associated with the novel coronavirus. We believe this framework can be extended and easily adapted in future pandemics to quickly learn relevant insights that are fundamental for understanding and combating a new infectious disease. 
    more » « less
  6. null (Ed.)
    Background There are still many unanswered questions about the novel coronavirus; however, a largely underutilized source of knowledge is the millions of people who have recovered after contracting the virus. This includes a majority of undocumented cases of COVID-19, which were classified as mild or moderate and received little to no clinical care during the course of illness. Objective This study aims to document and glean insights from the experiences of individuals with a first-hand experience in dealing with COVID-19, especially the so-called mild-to-moderate cases that self-resolved while in isolation. Methods This web-based survey study called C19 Insider Scoop recruited adult participants aged 18 years or older who reside in the United States and had tested positive for COVID-19 or antibodies. Participants were recruited through various methods, including online support groups for COVID-19 survivors, advertisement in local news outlets, as well as through professional and other networks. The main outcomes measured in this study included knowledge of contraction or transmission of the virus, symptoms, and personal experiences on the road to recovery. Results A total of 72 participants (female, n=53; male, n=19; age range: 18-73 years; mean age: 41 [SD 14] years) from 22 US states were enrolled in this study. The top known source of how people contracted SARS-CoV-2, the virus known to cause COVID-19, was through a family or household member (26/72, 35%). This was followed by essential workers contracting the virus through the workplace (13/72, 18%). Participants reported up to 27 less-documented symptoms that they experienced during their illness, such as brain or memory fog, palpitations, ear pain or discomfort, and neurological problems. In addition, 47 of 72 (65%) participants reported that their symptoms lasted longer than the commonly cited 2-week period even for mild cases of COVID-19. The mean recovery time of the study participants was 4.5 weeks, and exactly one-half of participants (50%) still experienced lingering symptoms of COVID-19 after an average of 65 days following illness onset. Additionally, 37 (51%) participants reported that they experienced stigma associated with contracting COVID-19. Conclusions This study presents preliminary findings suggesting that emphasis on family or household spread of COVID-19 may be lacking and that there is a general underestimation of the recovery time even for mild cases of illness with the virus. Although a larger study is needed to validate these results, it is important to note that as more people experience COVID-19, insights from COVID-19 survivors can enable a more informed public, pave the way for others who may be affected by the virus, and guide further research. 
    more » « less
  7. The COVID-19 pandemic has infected millions of people around the world, spreading rapidly and causing a flood of patients that risk overwhelming clinical facilities. Whether in urban or rural areas, hospitals have limited resources and personnel to treat critical infections in intensive care units, which must be allocated effectively. To assist clinical staff in deciding which patients are in the greatest need of critical care, we develop a predictive model based on a publicly-available data set that is rich in clinical markers. We perform statistical analysis to determine which clinical markers strongly correlate with hospital admission, semi-intensive care, and intensive care for COVID-19 patients. We create a predictive model that will assist clinical personnel in determining COVID-19 patient prognosis. Additionally, we take a step towards a global framework for COVID-19 prognosis prediction by incorporating statistical data for geographically and ethnically diverse COVID--19 patient sets into our own model. To the best of our knowledge, this is the first model which does not exclusively utilize local data. 
    more » « less
  8. null (Ed.)