skip to main content

Search for: All records

Creators/Authors contains: "Pu, Zhaoxia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Roll vortices are a series of large-scale turbulent eddies that nearly align with the mean wind direction and prevail in the hurricane boundary layer. In this study, the one-way nested WRF-LES model simulation results from Li et al. (J Atmos Sci 78(6):1847–1867,, 2021) are used to examine the structure and generation mechanism of roll vortices and associated coherent turbulence in the hurricane boundary layer during the landfall of Hurricane Harvey from 00 UTC 25 to 18 UTC 27 August 2017. Results indicate that roll vortices prevail in the hurricane boundary layer. The intense roll vortices and associated large turbulent eddies above them (at a height of ~ 200 to 3000 m) accumulate within a hurricane radius of 20–40 km. Their intensity is proportional to hurricane intensity during the simulation period. Before and during hurricane landfall, strong inflow convergence leads to horizontal advection of roll vortices throughout the entire hurricane boundary layer. Combined with the strong wind shear, the strongest roll vortices and associated large turbulent eddies are generated near the eyewall with suitable thermodynamic (Richardson number at around − 0.2 to 0.2) and dynamic conditions (strong negative inflow wind shear). After landfall, the decayed inflow weakens the inflow convergence and quickly reduces the strong roll vortices and associated large turbulent eddies. Diagnosis of vertical turbulent kinetic energy indicates that atmospheric pressure perturbation, caused by horizontal convergence, transfers the horizontal component of turbulence to the vertical component with a mean wavelength of about 1 km. The buoyancy term is weak and negative, and the large turbulent eddies are suppressed.

    more » « less
  2. Accurate specification of hurricane inner-core structure is critical to predicting the evolution of a hurricane. However, observations over hurricane inner cores are generally lacking. Previous studies have emphasized Tail Doppler radar (TDR) data assimilation to improve hurricane inner-core representation. Recently, Doppler wind lidar (DWL) has been used as an observing system to sample hurricane inner-core and environmental conditions. The NOAA P3 Hurricane Hunter aircraft has DWL installed and can obtain wind data over a hurricane’s inner core when the aircraft passes through the hurricane. In this study, we examine the impact of assimilating DWL winds and TDR radial winds on the prediction of Hurricane Earl (2016) with the NCEP operational Hurricane Weather Research and Forecasting (HWRF) system. A series of data assimilation experiments are conducted with the Gridpoint Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid system to identify the best way to assimilate TDR and DWL data into the HWRF forecast system. The results show a positive impact of DWL data on hurricane analysis and prediction. Compared with the assimilation of u and v components, assimilation of DWL wind speed provides better hurricane track and intensity forecasts. Proper choices of data thinning distances (e.g., 5 km horizontal thinning and 70 hPa vertical thinning for DWL) can help achieve better analysis in terms of hurricane vortex representation and forecasts. In the analysis and forecast cycles, the combined TDR and DWL assimilation (DWL wind speed and TDR radial wind, along with other conventional data, e.g., NCEP Automated Data Processing (ADP) data) offsets the downgrade analysis from the absence of DWL observations in an analysis cycle and outperforms assimilation of a single type of data (either TDR or DWL) and leads to improved forecasts of hurricane track, intensity, and structure. Overall, assimilation of DWL observations has been beneficial for analysis and forecasts in most cases. The outcomes from this study demonstrate the great potential of including DWL wind profiles in the operational HWRF system for hurricane forecast improvement. 
    more » « less
  3. This study examines the impacts of assimilating ocean-surface winds derived from the NASA Cyclone Global Navigation Satellite System (CYGNSS) on improving the short-range numerical simulations and forecasts of landfalling hurricanes using the NCEP operational Hurricane Weather Research and Forecasting (HWRF) model. A series of data assimilation experiments are performed using HWRF and a Gridpoint Statistical Interpolation (GSI)-based hybrid 3-dimensional ensemble-variational (3DEnVar) data assimilation system. The influence of CYGNSS data on hurricane forecasts is compared with that of Advanced Scatterometer (ASCAT) wind products that have already been assimilated into the HWRF forecast system in a series of assimilation experiments. The effects of different versions of CYGNSS data (V2.1 vs. V3.0) on hurricane forecasts are evaluated. The results indicate that CYGNSS ocean-surface wind can lead to improved numerical simulations and forecasts of hurricane track and intensity, asymmetric wind structure, and precipitation. The impacts of CYGNSS on hurricane forecasts are comparable and complementary to the operational use of ASCAT satellite data products. The dependence of the relative impacts of different versions of CYGNSS data on optimal thinning distances is evident. 
    more » « less
  4. Abstract

    This study analyzes observations collected by multilevel towers to estimate turbulence parameters in the atmospheric surface layer of two landfalling tropical cyclones (TCs). The momentum flux, turbulent kinetic energy (TKE) and dissipation rate increase with the wind speed independent of surface types. However, the momentum flux and TKE are much larger over land than over the coastal ocean at a given wind speed range. The vertical eddy diffusivity is directly estimated using the momentum flux and strain rate, which more quickly increases with the wind speed over a rougher surface. Comparisons of the eddy diffusivity estimated using the direct flux method and that using the friction velocity and height show good agreement. On the other hand, the traditional TKE method overestimates the eddy diffusivity compared to the direct flux method. The scaling coefficients in the TKE method are derived for the two different surface types to better match with the vertical eddy diffusivity based on the direct flux method. Some guidance to improve vertical diffusion parameterizations for TC landfall forecasts in weather simulations are also provided.

    more » « less
  5. Abstract

    Horizontal boundary layer roll vortices are a series of large-scale turbulent eddies that prevail in a hurricane’s boundary layer. In this paper, a one-way nested sub-kilometer-scale large-eddy simulation (LES) based on the Weather Research and Forecasting (WRF) Model was used to examine the impact of roll vortices on the evolution of Hurricane Harvey around its landfall from 0000 UTC 25 August to 1800 UTC 27 August 2017. The simulation results imply that the turbulence in the LES can be attributed mainly to roll vortices. With the representation of roll vortices, the LES provided a better simulation of hurricane wind vertical structure and precipitation. In contrast, the mesoscale simulation with the YSU PBL scheme overestimated the precipitation for the hurricane over the ocean. Further analysis indicates that the roll vortices introduced a positive vertical flux and thinner inflow layer, whereas a negative flux maintained the maximum tangential wind at around 400 m above ground. During hurricane landfall, the weak negative flux maintained the higher wind in the LES. The overestimated low-level vertical flux in the mesoscale simulation with the YSU scheme led to overestimated hurricane intensity over the ocean and accelerated the decay of the hurricane during landfall. Rainfall analysis reveals that the roll vortices led to a weak updraft and insufficient water vapor supply in the LES. For the simulation with the YSU scheme, the strong updraft combined with surplus water vapor eventually led to unrealistic heavy rainfall for the hurricane over the ocean.

    more » « less
  6. Abstract

    After a tropical storm makes landfall, its vortex interacts with the surrounding environment and the underlying surface. It is expected that diurnal variation over land will affect storm structures. However, this has not yet been explored in previous studies. In this paper, numerical simulation of postlandfall Tropical Storm Bill (2015) is conducted using a research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) model. Results indicate that during the storm's interaction with midlatitude westerlies over the Great Plains, the simulated storm with the SLAB land‐surface scheme is stronger, with faster eastward movement and attenuation, and more asymmetric structures than that with the NOAH land‐surface scheme. More symmetric structures correspond with a slower weakening and slower eastward movement of the storm over land. Further diagnoses suggest an obvious response of the storm's asymmetric structures to diurnal effects over land. Surface diabatic heating in the storm environment is important for the storm's symmetric structures and intensity over land. Specifically, during the transition from nighttime to daytime, the evident strengthening of convective instability, atmospheric baroclinicity, and the lateral advection of highair in the storm environment, associated with the rapid increase in surface diabatic heating, are conducive to the development of vertical vorticity and storm‐relative helicity, thus contributing to the maintenance of the storm's symmetric structures and intensity after landfall.

    more » « less