skip to main content


Search for: All records

Creators/Authors contains: "Puri, Shruti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased: a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the activation time across the barrier which, instead of increasing smoothly as a function of the barrier height, presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum regime. Direct applications to quantum computation and simulation are discussed.

    <supplementary-material><permissions><copyright-statement>Published by the American Physical Society</copyright-statement><copyright-year>2024</copyright-year></permissions></supplementary-material></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> Free, publicly-accessible full text available September 1, 2025</span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10535896-tailoring-fusion-based-error-correction-high-thresholds-biased-fusion-failures" itemprop="url"> <span class='span-link' itemprop="name">Tailoring Fusion-Based Error Correction for High Thresholds to Biased Fusion Failures</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevLett.131.120604" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevLett.131.120604  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Sahay, Kaavya</span> <span class="sep">; </span><span class="author" itemprop="author">Claes, Jahan</span> <span class="sep">; </span><span class="author" itemprop="author">Puri, Shruti</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-09-01">September 2023</time> , Physical Review Letters) </span> </div> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevLett.131.120604" target="_blank" title="Link to document DOI" data-ostiid="10535896"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10505940-high-threshold-codes-neutral-atom-qubits-biased-erasure-errors" itemprop="url"> <span class='span-link' itemprop="name">High-Threshold Codes for Neutral-Atom Qubits with Biased Erasure Errors</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevX.13.041013" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevX.13.041013  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Sahay, Kaavya</span> <span class="sep">; </span><span class="author" itemprop="author">Jin, Junlan</span> <span class="sep">; </span><span class="author" itemprop="author">Claes, Jahan</span> <span class="sep">; </span><span class="author" itemprop="author">Thompson, Jeff D.</span> <span class="sep">; </span><span class="author" itemprop="author">Puri, Shruti</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-10-24">October 2023</time> , Physical Review X) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> The requirements for fault-tolerant quantum error correction can be simplified by leveraging structure in the noise of the underlying hardware. In this work, we identify a new type of structured noise motivated by neutral-atom qubits, biased erasure errors, which arises when qubit errors are dominated by detectable leakage from only one of the computational states of the qubit. We study the performance of this model using gate-level simulations of the XZZX surface code. Using the predicted erasure fraction and bias of metastable 171Yb qubits, we find a threshold of 8.2% for two-qubit gate errors, which is 1.9 times higher than the threshold for unbiased erasures and 7.5 times higher than the threshold for depolarizing errors. Surprisingly, the improved threshold is achieved without bias-preserving controlled-not gates and, instead, results from the lower noise entropy in this model. We also introduce an XZZX cluster state construction for measurement-based error correction, hybrid fusion, that is optimized for this noise model. By combining fusion operations and deterministic entangling gates, this construction preserves the intrinsic symmetry of the XZZX code, leading to a higher threshold of 10.3% and enabling the use of rectangular codes with fewer qubits. We discuss a potential physical implementation using a single plane of atoms and movable tweezers. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevX.13.041013" target="_blank" title="Link to document DOI" data-ostiid="10505940"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10473459-error-suppression-arbitrary-size-black-box-quantum-operations" itemprop="url"> <span class='span-link' itemprop="name">Error Suppression for Arbitrary-Size Black Box Quantum Operations</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1103/PhysRevLett.131.190601" target="_blank" title="Link to document DOI">https://doi.org/10.1103/PhysRevLett.131.190601  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Lee, Gideon</span> <span class="sep">; </span><span class="author" itemprop="author">Hann, Connor T.</span> <span class="sep">; </span><span class="author" itemprop="author">Puri, Shruti</span> <span class="sep">; </span><span class="author" itemprop="author">Girvin, S. M.</span> <span class="sep">; </span><span class="author" itemprop="author">Jiang, Liang</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-11-09">November 2023</time> , Physical Review Letters) </span> </div> <div class="actions" style="padding-left:10px;"> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10505949-high-fidelity-gates-mid-circuit-erasure-conversion-atomic-qubit" itemprop="url"> <span class='span-link' itemprop="name">High-fidelity gates and mid-circuit erasure conversion in an atomic qubit</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1038/s41586-023-06438-1" target="_blank" title="Link to document DOI">https://doi.org/10.1038/s41586-023-06438-1  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Ma, Shuo</span> <span class="sep">; </span><span class="author" itemprop="author">Liu, Genyue</span> <span class="sep">; </span><span class="author" itemprop="author">Peng, Pai</span> <span class="sep">; </span><span class="author" itemprop="author">Zhang, Bichen</span> <span class="sep">; </span><span class="author" itemprop="author">Jandura, Sven</span> <span class="sep">; </span><span class="author" itemprop="author">Claes, Jahan</span> <span class="sep">; </span><span class="author" itemprop="author">Burgers, Alex P.</span> <span class="sep">; </span><span class="author" itemprop="author">Pupillo, Guido</span> <span class="sep">; </span><span class="author" itemprop="author">Puri, Shruti</span> <span class="sep">; </span><span class="author" itemprop="author">Thompson, Jeff D.</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-10-12">October 2023</time> , Nature) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> The development of scalable, high-fidelity qubits is a key challenge in quantum information science. Neutral atom qubits have progressed rapidly in recent years, demonstrating programmable processors1,2 and quantum simulators with scaling to hundreds of atoms3,4. Exploring new atomic species, such as alkaline earth atoms5,6,7, or combining multiple species8 can provide new paths to improving coherence, control and scalability. For example, for eventual application in quantum error correction, it is advantageous to realize qubits with structured error models, such as biased Pauli errors9 or conversion of errors into detectable erasures10. Here we demonstrate a new neutral atom qubit using the nuclear spin of a long-lived metastable state in 171Yb. The long coherence time and fast excitation to the Rydberg state allow one- and two-qubit gates with fidelities of 0.9990(1) and 0.980(1), respectively. Importantly, a large fraction of all gate errors result in decays out of the qubit subspace to the ground state. By performing fast, mid-circuit detection of these errors, we convert them into erasure errors; during detection, the induced error probability on qubits remaining in the computational space is less than 10−5. This work establishes metastable 171Yb as a promising platform for realizing fault-tolerant quantum computing. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> <div class="actions" style="padding-left:10px;"> <span class="reader-count"> <a class="misc external-link" href="https://doi.org/10.1038/s41586-023-06438-1" target="_blank" title="Link to document DOI" data-ostiid="10505949"> Full Text Available <span class="fas fa-external-link-alt"></span> </a> </span> </div> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10394531-tailored-cluster-states-high-threshold-under-biased-noise" itemprop="url"> <span class='span-link' itemprop="name">Tailored cluster states with high threshold under biased noise</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1038/s41534-023-00677-w" target="_blank" title="Link to document DOI">https://doi.org/10.1038/s41534-023-00677-w  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Claes, Jahan</span> <span class="sep">; </span><span class="author" itemprop="author">Bourassa, J. Eli</span> <span class="sep">; </span><span class="author" itemprop="author">Puri, Shruti</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-01-31">January 2023</time> , npj Quantum Information) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>Abstract

    Fault-tolerant cluster states form the basis for scalable measurement-based quantum computation. Recently, new stabilizer codes for scalable circuit-based quantum computation have been introduced that have very high thresholds under biased noise where the qubit predominantly suffers from one type of error, e.g. dephasing. However, extending these advances in stabilizer codes to generate high-threshold cluster states for biased noise has been a challenge, as the standard method for foliating stabilizer codes to generate fault-tolerant cluster states does not preserve the noise bias. In this work, we overcome this barrier by introducing a generalization of the cluster state that allows us to foliate stabilizer codes in a bias-preserving way. As an example of our approach, we construct a foliated version of the XZZX code which we call the XZZX cluster state. We demonstrate that under a circuit-level-noise model, our XZZX cluster state has a threshold more than double the usual cluster state when dephasing errors are more likely than errors that cause bit flips by a factor of order ~100 or more.

     
    more » « less
  2. Abstract

    Executing quantum algorithms on error-corrected logical qubits is a critical step for scalable quantum computing, but the requisite numbers of qubits and physical error rates are demanding for current experimental hardware. Recently, the development of error correcting codes tailored to particular physical noise models has helped relax these requirements. In this work, we propose a qubit encoding and gate protocol for171Yb neutral atom qubits that converts the dominant physical errors into erasures, that is, errors in known locations. The key idea is to encode qubits in a metastable electronic level, such that gate errors predominantly result in transitions to disjoint subspaces whose populations can be continuously monitored via fluorescence. We estimate that 98% of errors can be converted into erasures. We quantify the benefit of this approach via circuit-level simulations of the surface code, finding a threshold increase from 0.937% to 4.15%. We also observe a larger code distance near the threshold, leading to a faster decrease in the logical error rate for the same number of physical qubits, which is important for near-term implementations. Erasure conversion should benefit any error correcting code, and may also be applied to design new gates and encodings in other qubit platforms.

     
    more » « less