skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qin, Zihao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Controlling heat flow is a key challenge for applications ranging from thermal management in electronics to energy systems, industrial processing, and thermal therapy. However, progress has generally been limited by slow response times and low tunability in thermal conductance. In this work, we demonstrate an electronically gated solid-state thermal switch using self-assembled molecular junctions to achieve excellent performance at room temperature. In this three-terminal device, heat flow is continuously and reversibly modulated by an electric field through carefully controlled chemical bonding and charge distributions within the molecular interface. The devices have ultrahigh switching speeds above 1 megahertz, have on/off ratios in thermal conductance greater than 1300%, and can be switched more than 1 million times. We anticipate that these advances will generate opportunities in molecular engineering for thermal management systems and thermal circuit design. 
    more » « less
  2. Thermal management plays a key role in improving the energy efficiency and sustainability of future building envelopes. Here, we focus on the materials perspective and discuss the fundamental needs, current status, and future opportunities for thermal management of buildings. First, we identify the primary considerations and evaluation criteria for high-performance thermal materials. Second, state-of-the-art thermal materials are reviewed, ranging from conventional thermal insulating fiberglass, mineral wool, cellulose, and foams, to aerogels and mesoporous structures, as well as multifunctional thermal management materials. Further, recent progress on passive regulation and thermal energy storage systems are discussed, including sensible heat storage, phase change materials, and radiative cooling. Moreover, we discuss the emerging materials systems with tunable thermal and other physical properties that could potentially enable dynamic and interactive thermal management solutions for future buildings. Finally, we discuss the recent progress in theory and computational design from first-principles atomistic theory, molecular dynamics, to multiscale simulations and machine learning. We expect the rational design that combines data-driven computation and multiscale experiments could bridge the materials properties from microscopic to macroscopic scales and provide new opportunities in improving energy efficiency and enabling adaptive implementation per customized demand for future buildings. 
    more » « less
  3. Abstract Thermal management is the most critical technology challenge for modern electronics. Recent key materials innovation focuses on developing advanced thermal interface of electronic packaging for achieving efficient heat dissipation. Here, for the first time we report a record-high performance thermal interface beyond the current state of the art, based on self-assembled manufacturing of cubic boron arsenide (s-BAs). The s-BAs exhibits highly desirable characteristics of high thermal conductivity up to 21 W/m·K and excellent elastic compliance similar to that of soft biological tissues down to 100 kPa through the rational design of BAs microcrystals in polymer composite. In addition, the s-BAs demonstrates high flexibility and preserves the high conductivity over at least 500 bending cycles, opening up new application opportunities for flexible thermal cooling. Moreover, we demonstrated device integration with power LEDs and measured a superior cooling performance of s-BAs beyond the current state of the art, by up to 45 °C reduction in the hot spot temperature. Together, this study demonstrates scalable manufacturing of a new generation of energy-efficient and flexible thermal interface that holds great promise for advanced thermal management of future integrated circuits and emerging applications such as wearable electronics and soft robotics. 
    more » « less
  4. Abstract High performance thermal insulation materials are desired for a wide range of applications in space, buildings, energy, and environments. Here, a facile ambient processing approach is reported to synthesize a highly insulating and flexible monolithic poly(vinyl chloride) aerogel. The thermal conductivity is measured respectively as 28 mW (m K)−1at atmosphere approaching the air conductivity and 7.7 mW (m K)−1under mild evacuation condition. Thermal modeling is performed to understand the thermal conductivity contributions from different heat transport pathways in air and solid. The analysis based on the Knudsen effect and scattering mean free paths shows that the thermal insulation performance can be further improved through the optimization of porous structures to confine the movement of air molecules. Additionally, the prepared aerogels show superhydrophobicity due to the highly porous structures, which enables new opportunities for surface engineering. Together, the study demonstrates an energy‐saving and scalable ambient‐processing pathway to achieve ultralight, flexible, and superhydrophobic poly(vinyl chloride) aerogel for thermal insulation applications. 
    more » « less