skip to main content


Search for: All records

Creators/Authors contains: "Quataert, Eliot"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We study the spherical accretion of magnetized plasma with low angular momentum onto a supermassive black hole, utilizing global general relativistic magnetohydrodynamic simulations. Black hole-driven feedback in the form of magnetic eruptions and jets triggers magnetized turbulence in the surrounding medium. We find that when the Bondi radius exceeds a certain value relative to the black hole’s gravitational radius, this turbulence restricts the subsequent inflow of magnetic flux, strongly suppressing the strength of the jet. Consequently, magnetically arrested disks and powerful jets are not a generic outcome of the accretion of magnetized plasma, even if there is an abundance of magnetic flux available in the system. However, if there is significant angular momentum in the inflowing gas, the eruption-driven turbulence is suppressed (sheared out), allowing for the presence of a powerful jet. Both the initially rotating and nonrotating flows go through periods of low and high gas angular momentum, showing that the angular momentum content of the inflowing gas is not just a feature of the ambient medium, but is strongly modified by the eruption and jet-driven black hole feedback. In the lower-angular-momentum states, our results predict that there should be dynamically strong magnetic fields on horizon scales, but no powerful jet; this state may be consistent with Sgr A* in the Galactic center.

     
    more » « less
  2. ABSTRACT

    Recent observations with JWST have uncovered unexpectedly high cosmic star formation activity in the early Universe, mere hundreds of millions of years after the big bang. These observations are often understood to reflect an evolutionary shift in star formation efficiency (SFE) caused by changing galactic conditions during these early epochs. We present FIREbox$^{\it HR}$, a high-resolution, cosmological hydrodynamical simulation from the Feedback in Realistic Environments (FIRE) project, which offers insights into the SFE of galaxies during the first billion years of cosmic time. FIREbox$^{\it HR}$ re-simulates the cosmic volume ($L=22.1$ cMpc) of the original FIREbox run with eight times higher mass resolution ($m_{\rm b}\sim {}7800\, M_\odot$), but with identical physics, down to $z\sim {}6$. FIREbox$^{\it HR}$ predicts ultraviolet (UV) luminosity functions in good agreement with available observational data. The simulation also successfully reproduces the observed cosmic UV luminosity density at $z\sim {}6{\!-\!}14$, demonstrating that relatively high star formation activity in the early Universe is a natural outcome of the baryonic processes encoded in the FIRE-2 model. According to FIREbox$^{\it HR}$, the SFE–halo mass relation for intermediate mass haloes ($M_{\rm halo}\sim {}10^9{\!-\!}10^{11}\, {\rm M}_\odot$) does not significantly evolve with redshift and is only weakly mass-dependent. These properties of the SFE–halo mass relation lead to a larger contribution from lower mass haloes at higher z, driving the gradual evolution of the observed cosmic UV luminosity density. A theoretical model based on the SFE–halo mass relation inferred from FIREbox$^{\it HR}$ allows us to explore implications for galaxy evolution. Future observations of UV faint galaxies at $z\gt 12$ will provide an opportunity to further test these predictions and deepen our understanding of star formation during Cosmic Dawn.

     
    more » « less
  3. Abstract

    Massive elliptical galaxies harbor large amounts of hot gas (T≳ 106K) in their interstellar medium (ISM) but are typically quiescent in star formation. The jets of active galactic nuclei (AGNs) and Type Ia supernovae (SNe Ia) inject energy into the ISM, which offsets its radiative losses and keeps it hot. SNe Ia deposit their energy locally within the galaxy compared to the larger few ×10 kiloparsec-scale AGN jets. In this study, we perform high-resolution (5123) hydrodynamic simulations of a local (1 kpc3) density-stratified patch of the ISM of massive galaxies. We include radiative cooling and shell-averaged volume heating, as well as randomly exploding SN Ia. We study the effect of different fractions of supernova (SN) heating (with respect to the net cooling rate), different initial ISM density/entropy (which controls the growth timettiof the thermal instability), and different degrees of stratification (which affect the freefall timetff). We find that SNe Ia drive predominantly compressive turbulence in the ISM with a velocity dispersion ofσvup to 40 km s−1and logarithmic density dispersion ofσs∼ 0.2–0.4. These fluctuations trigger multiphase condensation in regions of the ISM, wheremin(tti)/tff0.6exp(6σs), in agreement with theoretical expectations that large density fluctuations efficiently trigger multiphase gas formation. Since the SN Ia rate is not self-adjusting, when the net cooling drops below the net heating rate, SNe Ia drive a hot wind which sweeps out most of the mass in our local model. Global simulations are required to assess the ultimate fate of this gas.

     
    more » « less
  4. ABSTRACT

    We use local stratified shearing-box simulations with magnetic field-aligned thermal conduction to study an idealized model of the coupling between a cold, radiatively efficient accretion disc, and an overlying, hot, two-temperature corona. Evaporation of a cold disc by conduction from the hot corona has been proposed as a means of mediating the soft-to-hard state transitions observed in X-ray binary systems. We model the coronal plasma in our local disc patch as an MHD fluid subject to both free-streaming ion conduction and a parametrized cooling function that captures the collisional transfer of energy from hot ions to colder, rapidly cooling leptons. In all of our models, independent of the initial net vertical magnetic flux (NF) threading the disc, we find no evidence of disc evaporation. The ion heat flux into the disc is radiated away before conduction can heat the disc’s surface layers. When an initial NF is present, steady-state temperature, density, and outflow velocities in our model coronae are unaffected by conduction. Instead of facilitating disc evaporation, thermal conduction is more likely to feed the disc with plasma condensing out of the corona, particularly in flows without NF. Our work indicates that uncertainties in the amount of NF threading the disc hold far greater influence over whether or not the disc will evaporate into a radiatively inefficient accretion flow compared to thermal conduction. We speculate that a change in net flux mediates disc truncation/evaporation.

     
    more » « less
  5. ABSTRACT

    In the absence of supplementary heat, the radiative cooling of halo gas around massive galaxies (Milky Way mass and above) leads to an excess of cold gas or stars beyond observed levels. Active galactic nucleus jet-induced heating is likely essential, but the specific properties of the jets remain unclear. Our previous work concludes from simulations of a halo with $10^{14} \,\mathrm{ M}_\odot$ that a successful jet model should have an energy flux comparable to the free-fall energy flux at the cooling radius and should inflate a sufficiently wide cocoon with a long enough cooling time. In this paper, we investigate three jet modes with constant fluxes satisfying the criteria, including high-temperature thermal jets, cosmic ray (CR)-dominant jets, and widely precessing kinetic jets in $10^{12}-10^{15}\, {\rm M}_{\odot }$ haloes using high-resolution, non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We find that scaling the jet energy according to the free-fall energy at the cooling radius can successfully suppress the cooling flows and quench galaxies without violating observational constraints. On the contrary, if we scale the energy flux based on the total cooling rate within the cooling radius, strong interstellar medium cooling dominates this scaling, resulting in a jet flux exceeding what is needed. Among the three jet types, the CR-dominant jet is most effective in suppressing cooling flows across all surveyed halo masses due to enhanced CR pressure support. We confirm that the criteria for a successful jet model work across a wider range, encompassing halo masses of $10^{12}-10^{15} {\rm M_\odot }$.

     
    more » « less
  6. Free, publicly-accessible full text available March 14, 2025
  7. Abstract

    Low-collisionality plasma in a magnetic field generically develops anisotropy in its distribution function with respect to the magnetic field direction. Motivated by the application to radiation from accretion flows and jets, we explore the effect of temperature anisotropy on synchrotron emission. We derive analytically and provide numerical fits for the polarized synchrotron emission and absorption coefficients for a relativistic bi-Maxwellian plasma (we do not consider Faraday conversion/rotation). Temperature anisotropy can significantly change how the synchrotron emission and absorption coefficients depend on observing angle with respect to the magnetic field. The emitted linear polarization fraction does not depend strongly on anisotropy, while the emitted circular polarization does. We apply our results to black hole imaging of Sgr A* and M87* by ray tracing a GRMHD simulation and assuming that the plasma temperature anisotropy is set by the thresholds of kinetic-scale anisotropy-driven instabilities. We find that the azimuthal asymmetry of the 230 GHz images can change by up to a factor of 3, accentuating (T>T) or counteracting (T<T) the image asymmetry produced by Doppler beaming. This can change the physical inferences from observations relative to models with an isotropic distribution function, e.g., by allowing for larger inclination between the line of sight and spin direction in Sgr A*. The observed image diameter and the size of the black hole shadow can also vary significantly due to plasma temperature anisotropy. We describe how the anisotropy of the plasma can affect future multifrequency and photon ring observations. We also calculate kinetic anisotropy-driven instabilities (mirror, whistler, and firehose) for relativistically hot plasmas.

     
    more » « less
  8. Free, publicly-accessible full text available March 14, 2025