The cycling of metals between interstellar gas and dust is a critical aspect of the baryon cycle of galaxies, yet our understanding of this process is limited. This study focuses on understanding dust depletion effects in the low-metallicity regime (<20%
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Z ⊙) typical of cosmic noon. Using medium-resolution UV spectroscopy from the Cosmic Origins Spectrograph on board the Hubble Space Telescope, gas-phase abundances and depletions of iron and sulfur were derived toward 18 sight lines in local dwarf galaxies IC 1613 and Sextans A. The results show that the depletion of Fe and S is consistent with that found in the Milky Way (MW), LMC, and SMC. The depletion level of Fe increases with gas column density, indicating dust growth in the interstellar medium. The level of Fe depletion decreases with decreasing metallicity, resulting in the fraction of iron in gas ranging from 3% in the MW to 9% in IC 1613 and ∼19% in Sextans A. The dust-to-gas and dust-to-metal ratios (D /G ,D /M ) for these dwarf galaxies were estimated based on the MW relations between the depletion of Fe and other elements. The study finds thatD /G decreases only slightly sublinearly with metallicity, withD /M decreasing from 0.41 ± 0.05 in the MW to 0.11 ± 0.11 at 0.10Z ⊙(at logN (H) = 21 cm−2). The trend ofD /G versus metallicity using depletion in local systems is similar to that inferred in Damped Lyα systems from abundance ratios but lies higher than the trend inferred from far-IR measurements in nearby galaxies.Free, publicly-accessible full text available April 26, 2025 -
Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲
z ≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Ovi and Neviii absorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atz QSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Ovi λ λ 1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovi to a detection limit of . Meanwhile, only five galaxies or galaxy groups exhibit the Neviii λ λ 770, 780 doublet absorption, down to a limiting column density of . These Ovi - and Neviii -bearing halos reside in different galaxy environments with stellar masses ranging from to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Ovi absorption is broad withσ υ > 40 km s−1for galaxies of within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Ovi and Neviii is suggested to be the dominant phase in sub-L * galaxies with based on their high ionization fractions in the CGM.Free, publicly-accessible full text available June 1, 2025 -
Abstract We present Keck Cosmic Web Imager Ly
α integral field spectroscopy of the fields surrounding 14 damped Lyα absorbers (DLAs) atz ≈ 2. Of these 14 DLAs, nine have high metallicities ([M/H] > − 0.3), and four of those nine feature a CO-emitting galaxy at an impact parameter ≲30 kpc. Our search reaches median Lyα line flux sensitivities of ∼2 × 10−17erg s−1cm−2over apertures of ∼6 kpc and out to impact parameters of ∼50 kpc. We recover the Lyα flux of three known Lyα -emitting Hi -selected galaxies in our sample. In addition, we find two Lyα emitters at impact parameters of ≈50–70 kpc from the high-metallicity DLA atz ≈ 1.96 toward QSO B0551-366. This field also contains a massive CO-emitting galaxy at an impact parameter of ≈15 kpc. Apart from the field with QSO B0551-366, we do not detect significant Lyα emission in any of the remaining eight high-metallicity DLA fields. Considering the depth of our observations and our ability to recover previously known Lyα emitters, we conclude that Hi -selected galaxies associated with high-metallicity DLAs atz ≈ 2 are dusty and therefore might feature low Lyα escape fractions. Our results indicate that complementary approaches—using Lyα , CO, Hα , and [Cii ] 158μ m emission—are necessary to identify the wide range of galaxy types associated withz ≈ 2 DLAs. -
ABSTRACT Using deep imaging from the CANDELS and HFF surveys, we present bulge+disc decompositions with galfitm for $\sim$17 000 galaxies over $0.2 \le z\le 1.5$. We use various model parameters to select reliable samples of discs and bulges, and derive their stellar masses using an empirically calibrated relation between mass-to-light ratio and colour. Across our entire redshift range, we show that discs follow stellar mass–size relations that are consistent with those of star-forming galaxies, suggesting that discs primarily evolve via star formation. In contrast, the stellar mass–size relations of bulges are mass-independent. Our novel data set further enables us to separate components into star-forming and quiescent based on their specific star formation rates. We find that both star-forming discs and star-forming bulges lie on stellar mass–size relations that are similar to those of star-forming galaxies, while quiescent discs are typically smaller than star-forming discs and lie on steeper relations, implying distinct evolutionary mechanisms. Similar to quiescent galaxies, quiescent bulges show a flattening in the stellar mass–size relation at $\sim 10^{10}$ M$_\odot$, below which they show little mass dependence. However, their best-fitting relations have lower normalizations, indicating that at a given mass, bulges are smaller than quiescent galaxies. Finally, we obtain rest-frame colours for individual components, showing that bulges typically have redder colours than discs, as expected. We visually derive UVJ criteria to separate star-forming and quiescent components and show that this separation agrees well with component colour. HFF bulge+disc decomposition catalogues used for these analyses are publicly released with this paper.
-
Abstract FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift of
z = 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7M ⊙, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7M ⊙yr−1. These host properties are commensurate with the star-forming field galaxy population atz ∼ 1 and trace their properties analogously to the population of low-z FRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90–182 pc cm−3(rest frame). This leaves a significant excess of pc cm−3(in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation.Free, publicly-accessible full text available March 1, 2025 -
Abstract We present a sample of nine fast radio bursts (FRBs) from which we derive magnetic field strengths of the host galaxies represented by normal,
z < 0.5 star-forming galaxies with stellar massesM *≈ 108–1010.5M ⊙. We find no correlation between the FRB rotation measure (RM) and redshift, which indicates that the RM values are due mostly to the FRB host contribution. This assertion is further supported by a significant positive correlation (Spearman test probabilityP S < 0.05) found between the RM and the estimated host dispersion measure (DMhost; with Spearman rank correlation coefficientr S = +0.75). For these nine galaxies, we estimate their magnetic field strengths projected along the sight line ∣B ∥∣, finding a low median value of 0.5μ G. This implies the magnetic fields of our sample of hosts are weaker than those characteristic of the solar neighborhood (≈6μ G), but relatively consistent with a lower limit on the observed range of ≈2–10μ G for star-forming disk galaxies, especially as we consider reversals in theB -field, and that we are only probing B∥. We compare to RMs from simulated galaxies of the Auriga project—magneto-hydrodynamic cosmological zoom simulations—and find that the simulations predict the observed values to within a 95% confidence interval. Upcoming FRB surveys will provide hundreds of new FRBs with high-precision localizations, RMs, and imaging follow-up to support further investigation into the magnetic fields of a diverse population ofz < 1 galaxies. -
Abstract We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Ly
α absorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <z abs< 3.5, such that the secondary sightline probes absorption from Lyα and a large suite of metal-line transitions (including Oi , Cii , Civ , Siii , and Siiv ) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R ⊥≤ 284 kpc. Analysis of Lyα in the CGM sightlines shows an anticorrelation betweenR ⊥and Hi column density (N HI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Cii and Siii withN > 1013cm−2within 100 kpc of DLAs are larger by 2σ than those measured in the CGM of Lyman break galaxies (Cf (N CII ) > 0.89 and ). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andN HI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range ), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civ λ 1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ ) correlated, suggesting that they trace the potential well of the host halo overR ⊥≲ 300 kpc scales. At the same time, velocity centroids for Civ λ 1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M ⊙. -
Abstract We present high-resolution 1.5–6 GHz Karl G. Jansky Very Large Array and Hubble Space Telescope (HST) optical and infrared observations of the extremely active repeating fast radio burst (FRB) FRB 20201124A and its barred spiral host galaxy. We constrain the location and morphology of star formation in the host and search for a persistent radio source (PRS) coincident with FRB 20201124A. We resolve the morphology of the radio emission across all frequency bands and measure a star formation rate (SFR) ≈ 8.9
M ⊙yr−1, approximately ≈2.5–6 times larger than optically inferred SFRs, demonstrating dust-obscured star formation throughout the host. Compared to a sample of all known FRB hosts with radio emission, the host of FRB 20201124A has the most significantly obscured star formation. While HST observations show the FRB to be offset from the bar or spiral arms, the radio emission extends to the FRB location. We propose that the FRB progenitor could have formed in situ (e.g., a magnetar born from a massive star explosion). It is still plausible, although less likely, that the progenitor of FRB 20201124A migrated from the central bar of the host. We further place a limit on the luminosity of a putative PRS at the FRB position ofL 6.0GHz≲ 1.8 ×1027erg s−1Hz−1, among the deepest PRS luminosity limits to date. However, this limit is still broadly consistent with both magnetar nebulae and hypernebulae models assuming a constant energy injection rate of the magnetar and an age of ≳105yr in each model, respectively. -
Abstract The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and H α emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 10 8−11.5 M ⊙ . Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and H α to compute the average UV-to-H α luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼10 9.5 M ⊙ , at all radii, have a UV-to-H α ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳10 9.5 M ⊙ , the UV-to-H α ratio is elevated toward their outskirts ( R / R eff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-H α ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼10 7.5 M ⊙ kpc −2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness.more » « less
-
Abstract The circumgalactic medium (CGM) plays a vital role in the formation and evolution of galaxies, acting as a lifeline between galaxies and the surrounding intergalactic medium. In this study, we leverage a unique sample of quasar pairs to investigate the properties of the CGM with absorption line tomography. We present a new sample of medium-resolution Keck/ESI, Magellan/MagE, and VLT/XSHOOTER spectra of 29 quasar pairs at redshift 2 <
z < 3. We supplement the sample with additional spectra of 32 pairs from the literature, creating a catalog of 61 quasar pairs with angular separations between 1.″7 and 132.″9 and projected physical separations (r ⊥) between 14 kpc and 887 kpc. We construct a catalog of 906 metal-line absorption doublets of Civ (λλ 1548, 1550) with equivalent widths ranging from 6 m Å ≤W r ,1550≤ 2053 m Å. The best-fit linear model to the log-space equivalent width frequency distribution ( ) of the sample yields coefficients ofm = −1.44 ± 0.16 andb = −0.43 ± 0.16. To constrain the projected extent of Civ , we calculate the transverse autocorrelation function. The flattening of the autocorrelation function at lowr ⊥provides a lower limit for the coherence length of the metal enriched CGM—on the order of 200h −1comoving kpc. This physical size constraint allows us to refine our understanding of the metals in the CGM, where the extent of Civ in the CGM depends on gas flows, feedback, timescale of metal injection and mixing, and the mass of the host galaxies.