skip to main content


Search for: All records

Creators/Authors contains: "Ramesh, Rahul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transformers trained on huge text corpora exhibit a remarkable set of capabilities. Given the inherent compositional nature of language, one can expect the model to learn to compose these capabilities, potentially yielding a combinatorial explosion of what operations it can perform on an input. Motivated by the above, we aim to assess in this paper “how capable can a transformer become?”. In this work, we train Transformer models on a data-generating process that involves compositions of a set of well-defined monolithic capabilities and show that: (1) Transformers generalize to exponentially or even combinatorially many functions not seen in the training data; (2) composing functions by generating intermediate outputs is more effective at generalizing to unseen compositions; (3) the training data has a significant impact on the model’s ability to compose functions (4) Attention layers in the latter half of the model seem critical to compositionality. 
    more » « less
  2. Transformers trained on huge text corpora exhibit a remarkable set of capabilities, e.g., performing simple logical operations. Given the inherent compositional nature of language, one can expect the model to learn to compose these capabilities, potentially yielding a combinatorial explosion of what operations it can perform on an input. Motivated by the above, we aim to assess in this paper “how capable can a transformer become?”. Specifically, we train autoregressive Transformer models on a data-generating process that involves compositions of a set of well-defined monolithic capabilities. Through a series of extensive and systematic experiments on this data-generating process, we show that: (1) Autoregressive Transformers can learn compositional structures from the training data and generalize to exponentially or even combinatorially many functions; (2) composing functions by generating intermediate outputs is more effective at generalizing to unseen compositions, compared to generating no intermediate outputs; (3) the training data has a significant impact on the model’s ability to compose unseen combinations of functions; and (4) the attention layers in the latter half of the model are critical to compositionality 
    more » « less
  3. null (Ed.)
    Description of the DISCo facility and adaptive control experiments 
    more » « less