skip to main content

Search for: All records

Creators/Authors contains: "Ramezani, Hamidreza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ring laser gyroscopes (RLGs) based on non-Hermitian exceptional points (EPs) have garnered much recent interest due to their exceptional sensitivity. Such gyroscopes typically consist of two-ring laser resonators, one with loss and one with an equal amount of optical gain. The coupling strength between these ring resonators is a key parameter determining the sensitivity of EP-based RLGs. Here we explore how the exceptional sensitivity demonstrated in this coupled dimer may be further enhanced by adding more dimers in an array. Specifically, we propose two types of ring laser gyroscope lattice arrays, each composed ofNcoupled dimers arrayed serially or concentrically with periodic boundary conditions, that guide counter-propagating photons in a rotating frame. Using coupled mode theory, we show that these lattice gyroscopes exhibit an enhanced effective coupling rate between the gain and loss resonators at the EP, thereby producing greater sensitivity to the angular rotation rate than their constituent dimers. This work paves the way toward EP-based RLGs with the necessary sensitivity for GPS-free navigation.

    more » « less
  2. The non-Hermitian models, which are symmetric under parity (P) and time-reversal (T) operators, are the cornerstone for the fabrication of new ultra-sensitive optoelectronic devices. However, providing the gain in such systems usually demands precise control of nonlinear processes, limiting their application. In this paper, to bypass this obstacle, we introduce a class of time-dependent non-Hermitian Hamiltonians (not necessarily Floquet) that can describe a two-level system with temporally modulated on-site potential and couplings. We show that implementing an appropriate non-Unitary gauge transformation converts the original system to an effective one with a balanced gain and loss. This will allow us to derive the evolution of states analytically. Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hiddenPT-symmetry potentially without imaginary onsite amplification and absorption mechanism to obtain an exceptional point.

    more » « less
  3. Abstract

    We construct localized beams in a non-Hermitian Glauber Fock (NGF) lattice of coupled waveguides and show that they can propagate over a long distance withalmost no diffraction. We specifically obtain the diffraction-free beams in a finite NGF lattice at the exceptional point (EP) by using the exact eigenstates of the semi-infinite unidirectional NGF lattice. We provide a numerical approach to finding other lattices that are capable of supporting non-diffracting beams at EPs.

    more » « less
  4. We propose to use exceptional points (EPs) to construct diffraction-free beam propagation and localized power oscillation in lattices. We specifically consider two systems to utilize EPs for diffraction-free beam propagation, one in synthetic gauge lattices and the other in unidirectionally coupled resonators where each resonator individually is capable of creating orbital angular momentum (OAM) beams. In the second system, we introduce the concept of robust and tunable OAM beam propagation in discrete lattices. We show that one can create robust OAM beams in an arbitrary number of sites of a photonic lattice. Furthermore, we report power oscillation at the EP of a non-Hermitian lattice. Our research widens the study and application of EPs in different photonic systems including OAM beams and their associated dynamics in discrete lattices.

    more » « less