skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ramprasad, Rampi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Polymers are a vital part of everyday life. Their chemical universe is so large that it presents unprecedented opportunities as well as significant challenges to identify suitable application-specific candidates. We present a complete end-to-end machine-driven polymer informatics pipeline that can search this space for suitable candidates at unprecedented speed and accuracy. This pipeline includes a polymer chemical fingerprinting capability called polyBERT (inspired by Natural Language Processing concepts), and a multitask learning approach that maps the polyBERT fingerprints to a host of properties. polyBERT is a chemical linguist that treats the chemical structure of polymers as a chemical language. The present approach outstrips the best presently available concepts for polymer property prediction based on handcrafted fingerprint schemes in speed by two orders of magnitude while preserving accuracy, thus making it a strong candidate for deployment in scalable architectures including cloud infrastructures. 
    more » « less
  2. Abstract Density functional theory (DFT) has been a critical component of computational materials research and discovery for decades. However, the computational cost of solving the central Kohn–Sham equation remains a major obstacle for dynamical studies of complex phenomena at-scale. Here, we propose an end-to-end machine learning (ML) model that emulates the essence of DFT by mapping the atomic structure of the system to its electronic charge density, followed by the prediction of other properties such as density of states, potential energy, atomic forces, and stress tensor, by using the atomic structure and charge density as input. Our deep learning model successfully bypasses the explicit solution of the Kohn-Sham equation with orders of magnitude speedup (linear scaling with system size with a small prefactor), while maintaining chemical accuracy. We demonstrate the capability of this ML-DFT concept for an extensive database of organic molecules, polymer chains, and polymer crystals. 
    more » « less
  3. A central problem of materials science is to determine whether a hypothetical material is stable without being synthesized, which is mathematically equivalent to a global optimization problem on a highly nonlinear and multimodal potential energy surface (PES). This optimization problem poses multiple outstanding challenges, including the exceedingly high dimensionality of the PES, and that PES must be constructed from a reliable, sophisticated, parameters-free, and thus very expensive computational method, for which density functional theory (DFT) is an example. DFT is a quantum mechanics-based method that can predict, among other things, the total potential energy of a given configuration of atoms. DFT, although accurate, is computationally expensive. In this work, we propose a novel expansion-exploration-exploitation framework to find the global minimum of the PES. Starting from a few atomic configurations, this “known” space is expanded to construct a big candidate set. The expansion begins in a nonadaptive manner, where new configurations are added without their potential energy being considered. A novel feature of this step is that it tends to generate a space-filling design without the knowledge of the boundaries of the domain space. If needed, the nonadaptive expansion of the space of configurations is followed by adaptive expansion, where “promising regions” of the domain space (those with low-energy configurations) are further expanded. Once a candidate set of configurations is obtained, it is simultaneously explored and exploited using Bayesian optimization to find the global minimum. The methodology is demonstrated using a problem of finding the most stable crystal structure of aluminum. History: Kwok Tsui served as the senior editor for this article. Funding: The authors acknowledge a U.S. National Science Foundation Grant DMREF-1921873 and XSEDE through Grant DMR170031. Data Ethics & Reproducibility Note: The code capsule is available on Code Ocean at https://codeocean.com/capsule/3366149/tree and in the e-Companion to this article (available at https://doi.org/10.1287/ijds.2023.0028 ). 
    more » « less
  4. null (Ed.)
  5. Abstract Fabricating polymeric composites with desirable characteristics for electronic applications is a complex and costly process. Digital light processing (DLP) 3D printing emerges as a promising technique for manufacturing intricate structures. In this study, polymeric samples are fabricated with a conductivity difference exceeding three orders of magnitude in various portions of a part by employing grayscale DLP (g‐DLP) single‐vat single‐cure 3D printing deliberate resin design. This is realized through the manipulation of light intensity during the curing process. Specifically, the rational resin design with added lithium ions results in the polymer cured under the maximum UV‐light intensity exhibiting higher electrical resistance. Conversely, sections that are only partially cured retains uncured monomers, serving as a medium that facilitates ion mobility, consequently leading to higher conductivity. The versatility of g‐DLP allows precise control of light intensity in different regions during the printing process. This characteristic opens up possibilities for applications, notably the low‐cost, facile, and rapid production of complex electrical circuits and sensors. The utilization of this technique makes it feasible to fabricate materials with tailored conductivity and functionality, providing an innovative pathway to advance the accelerated and facile creation of sophisticated electronic devices. 
    more » « less