In addition to their attractive technological applications in photovoltaics and light emitters, the perovskite family of semiconductors has recently emerged as an excellent excitonic material for fundamental studies. Specifically, the 2D hybrid organic-inorganic perovskite (HOIP) offers the added advantage of room temperature investigations owing to their large exciton binding energy. In this work, we strongly couple excitons in 2D HOIP crystals to planar microcavity photons sustaining exciton-polaritons under ambient conditions resulting in a Rabi splitting of 290 meV. Dark excitons directly pump the polariton branch along its dispersion in resonance with the Stokes shifted emission state (radiative pumping), creating a high density of polaritons at higher in-plane momentum (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
k ||). We further probe the nonlinear polariton dispersion dynamics at varying input laser fluence, which indicates efficient polariton-polariton scattering and decay tok || = 0 from higherk ||. The observation of Stokes shift-assisted energy exchange of dark states with lower polaritons coupled with evidence of efficient polariton-polariton scattering makes 2D HOIPs an attractive platform to study exciton-polariton many-body physics and Bose-Einstein like condensation (BEC) at room temperature. -
Abstract In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to over 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community’s perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.
-
Abstract A major breakthrough in the field of organic photovoltaics (OPVs) was the development of the donor/acceptor heterojunction that aids in separating Coulombically bound excitons that are generated upon photoabsorption. Additionally, bound charge transfer (CT) states that result from the exchange of charge carriers across the donor/acceptor interface are believed to play an important role in charge generation. Though organic thin films are often disordered, enhancements to the local structural order at the donor/acceptor interface have recently been shown to greatly influence CT state energetics and the charge generation process. In this progress report, recent efforts to understand the role that donor/acceptor morphology plays in the behavior of CT states and the resulting implications on OPV function are presented. It is aimed to provide a survey of different experimental approaches and to present a balanced examination of current interpretations of key results, and to offer best practices for the fabrication and study of morphologically tunable donor/acceptor CT states.