Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2025
-
A bstract We study generalized symmetries in a simplified arena in which the usual quantum field theories of physics are replaced with topological field theories and the smooth structure with which the symmetry groups of physics are usually endowed is forgotten. Doing so allows many questions of physical interest to be answered using the tools of homotopy theory. We study both global and gauge symmetries, as well as ‘t Hooft anomalies, which we show fall into one of two classes. Our approach also allows some insight into earlier work on symmetries (generalized or not) of topological field theories.more » « less
-
We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\#^{g}S^{n}\times S^{n}$ relative to a disc in a stable range, for $2n\geqslant 6$ . Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range.more » « less
-
Abstract The Torelli group of $W_g = \#^g S^n \times S^n$ is the group of diffeomorphisms of $W_g$ fixing a disc that act trivially on $H_n(W_g;\mathbb{Z} )$ . The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of $\text{Sp}_{2g}(\mathbb{Z} )$ or $\text{O}_{g,g}(\mathbb{Z} )$ . In this article we prove that for $2n \geq 6$ and $g \geq 2$ , they are in fact algebraic representations. Combined with previous work, this determines the rational cohomology of the Torelli group in a stable range. We further prove that the classifying space of the Torelli group is nilpotent.more » « less
-
We prove a new kind of stabilisation result, “secondary homological stability,” for the homology of mapping class groups of orientable surfaces with one boundary component. These results are obtained by constructing CW approximations to the classifying spaces of these groups, in the category of E2-algebras, which have no E2-cells below a certain vanishing line.more » « less