skip to main content

Search for: All records

Creators/Authors contains: "Randall, Dana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. At the macroscale, controlling robotic swarms typically uses substantial memory, processing power, and coordination unavailable at the microscale, e.g., for colloidal robots, which could be useful for fighting disease, fabricating intelligent textiles, and designing nanocomputers. To develop principles that can leverage physical interactions and thus be used across scales, we take a two-pronged approach: a theoretical abstraction of self-organizing particle systems and an experimental robot system of active cohesive granular matter that intentionally lacks digital electronic computation and communication, using minimal (or no) sensing and control. As predicted by theory, as interparticle attraction increases, the collective transitions from dispersed to a compact phase. When aggregated, the collective can transport non-robot “impurities,” thus performing an emergent task driven by the physics underlying the transition. These results reveal a fruitful interplay between algorithm design and active matter robophysics that can result in principles for programming collectives without the need for complex algorithms or capabilities.
  2. Abstract Monotonic surfaces spanning finite regions of ℤ d arise in many contexts, including DNA-based self-assembly, card-shuffling and lozenge tilings. One method that has been used to uniformly generate these surfaces is a Markov chain that iteratively adds or removes a single cube below the surface during a step. We consider a biased version of the chain, where we are more likely to add a cube than to remove it, thereby favouring surfaces that are ‘higher’ or have more cubes below it. We prove that the chain is rapidly mixing for any uniform bias in ℤ 2 and for bias λ > d in ℤ d when d  > 2. In ℤ 2 we match the optimal mixing time achieved by Benjamini, Berger, Hoffman and Mossel in the context of biased card shuffling [2], but using much simpler arguments. The proofs use a geometric distance function and a variant of path coupling in order to handle distances that can be exponentially large. We also provide the first results in the case of fluctuating bias , where the bias can vary depending on the location of the tile. We show that the chain continues to be rapidly mixing if the biases aremore »close to uniform, but that the chain can converge exponentially slowly in the general setting.« less
  3. We present and rigorously analyze the behavior of a distributed, stochastic algorithm for separation and integration in self-organizing particle systems, an abstraction of programmable matter. Such systems are composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational power. We consider heterogeneous particle systems of two different colors and prove that these systems can collectively separate into different color classes or integrate, indifferent to color. We accomplish both behaviors with the same fully distributed, local, stochastic algorithm. Achieving separation or integration depends only on a single global parameter determining whether particles prefer to be next to other particles of the same color or not; this parameter is meant to represent external, environmental influences on the particle system. The algorithm is a generalization of a previous distributed, stochastic algorithm for compression (PODC '16), which can be viewed as a special case of separation where all particles have the same color. It is significantly more challenging to prove that the desired behavior is achieved in the heterogeneous setting, however, even in the bichromatic case we focus on. This requires combining several new techniques, including the cluster expansion from statistical physics, a new variant of the bridging argumentmore »of Miracle, Pascoe and Randall (RANDOM '11), the high-temperature expansion of the Ising model, and careful probabilistic arguments.« less