skip to main content

Search for: All records

Creators/Authors contains: "Rashidi, Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, analysis and control of a highly efficient, high-power full-bridge unidirectional resonant LLC solid-state transformer (SST) are discussed. A combination of pulse frequency modulation and phase-shift modulation is utilized to control this resonant converter for a wide load range. The converter is designed to maintain soft switching by using a resonant circuit to minimize the switching loss of the high-frequency converter. Zero-voltage-switching (ZVS) is achieved for the H-bridge converter. The ZVS boundary for the proposed combined control method is also analyzed in detail. The experimental setup for the suggested configuration was implemented, and the performance of the proposed control scheme and resonant LLC SST have been verified with test results. The proposed combined control scheme improves control performance. The obtained results show that, the proposed system can regulate output voltage and maintain soft switching in a wide range of load. Thus, the efficiency of the system is improved and an efficiency of 97.18% is achieved.
  2. Generally, the output power of the Photovoltaic (PV) panels is less than the nominal rating of the panel. On the other hand, the inverters of the PV systems are normally sized smaller than the nominal rating of the photovoltaic system. A typical PV to inverter power rating ratio is 1.2, which can be influenced by the weather condition. The main drawback is that during peak irradiance and optimal temperature situation, the peak power is generated at the PV, but the inverter is not sized for absorbing the whole power. This article develops a systematic method to calculate the optimal ratio between PV panel and inverter to absorb the maximum possible power with an optimal cost. This method uses the annual irradiance and temperature of the geographical region and extracts the power curves for a photovoltaic system in specific regions. Based on the distribution of the various weather conditions, the total possible power generation of the system is calculated. Then the possible extracted and lost power for different sizes of inverters are calculated to develop an efficiency function for the extracted power of the typical power system. This function is optimized considering the price of inverters and system. Both of conventionalmore »1000 V PV system as well as recently developed 1500 V system for 480 VAC grid connection are studied and the effect of transformer in both case is investigated. The paper shows how 1500 V system is superior to its 1000 V counterpart.« less
  3. Reliability enhancement of microgrids is challenged by environmental and operational failures. Centrally controlled microgrids are susceptible to failures at high probability due to a single-point-of-failure, e.g. the central controller. True decentralization of microgrid architecture entails elimination of the central controller, attaining a parallel configuration for the system. In this paper, decentralized microgrid control architecture is proposed as a solution for reliability degradation over the time, and analyzes the reliability aspects of centralized and decentralized control architectures for microgrids. Degree of importance of a single controller in centralized and decentralized architectures is determined and validated by Markov Chain Models (MCM). Results confirm that higher reliability is achieved when true decentralization of control architecture is adopted. Challenges of implementing a true decentralized control architecture are discussed. Hardware-In-the-Loop simulation results for microgrid controller failure scenarios for both architectures are presented and discussed.
  4. The challenge of failure management emerges in decentralized architectures due to the distributed nature of the layered control process. Failures in microgrid system may occur at the microgrid level or any of the control layers. A failure detection and response mechanism is required to attain a reliable, fault-tolerant microgrid operation. This paper introduces a Failure Management Unit as an essential function in a microgrid Energy Management System. The proposed unit comprises failure detection mechanisms and a recovery algorithm. The proposed system is applied to a microgrid case study and shows a robust detection and recovery outcome during a system failure. The real-time experimental results were achieved using Hardware-In-the-Loop platform. Coordination between controllers during the recovery period requires low-bandwidth communications, which has no significant overhead on the communication infrastructure.
  5. Development of the new generation of high power and high frequency power electronic switches along with the need for compact controllable converters for utilization of distributed energy resources in the grid, have led to significant developments in the area of solid state transformers in the last years. The design process of a high frequency transformer as the main element in the solid state transformer is illustrated in this article. A multi winding transformer for multiport SST application is designed, studied and built in this research. In a MPSST several windings feed the core. As the result, coupling coefficient between each pair of windings, become an important factor which is studied in this study. Since the transformer is designed for high frequency applications, the power loss in the wire and core of the transformer increases as the result of higher skin effect and eddy current loss in high frequency. Three important factors in the design of HF transformer for MPSST are discussed in the paper. First, four different possible core materials are compared based on their flux density, frequency range, loss and price. Then the cable selection is illustrated and finally, different winding placement and distribution on the same core aremore »suggested and the inductance and coupling coefficient matrices are calculated using ANSYS Maxwell 3D simulation. The transformer is built in the lab and the inductance values matches the expected values from the simulation.« less
  6. Distribution systems need significant voltage support with growing penetration of distributed generations especially intermittent renewable energy resources and smart loads. This paper introduces the application of the Multi-Port Solid State Transformer (MPSST) as an effective tool to support grid voltage at distribution level while integrating distributed energy resources. The solid state transformer replaces the conventional transformer between two voltage zones of distribution systems. Matlab/Simulink environment is used to simulate the IEEE 14 bus test system with an MPSST as a case study. The simulation results prove the effectiveness of the MPSST supporting the distribution system at local level in a fast and efficient manner in response to disturbances caused by load variations.
  7. The focus of this study is on the design of a full-bridge unidirectional resonant LLC Solid State Transformer. The proposed topology uses a high-frequency transformer to optimize the size and weight of the converter. This converter has the capability of operating at fluctuating load conditions while it keeps the voltage regulated in different operation point. The converter is designed to maintain soft switching by using a resonant circuit in this design to minimize the switching loss of the high frequency converter. ZVS in the leading leg for turn on mode and ZCS commutation in the lagging leg for all of the modes are achieved in the H-bridge through the suggested circuitry which is analyzed mathematically in detail in this study. A combination of Pulse frequency modulation (PFM) and Phase Shifting Modulation (PSM) are utilized to control this resonant converter. The experimental setup for the suggested configuration was implemented and the results of the simulation and calculations have been verified with test results. The hardware set up was tested with two different power levels and the output results confirm that the control method works properly to feed the load and keeps the converter working in the expected frequency range and maintainingmore »the soft switching to decrease switching loss. The results shows conversion efficiency of 97.18% is achieved.« less