Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Plant disease often increases with N, decreases with CO2, and increases as biodiversity is lost (i.e., the dilution effect). Additionally, all these factors can indirectly alter disease by changing host biomass and hence density-dependent disease transmission. Yet over long periods of time as communities undergo compositional changes, these biomass-mediated pathways might fade, intensify, or even reverse in direction. Using a field experiment that has manipulated N, CO2, and species richness for over 20 years, we compared severity of a specialist rust fungus (Puccinia andropogonis) on its grass host (Andropogon gerardii) shortly after the experiment began (1999) and twenty years later (2019). Between these two sampling periods, two decades apart, we found that disease severity consistently increased with N and decreased with CO2. However, the relationship between diversity and disease reversed from a dilution effect in 1999 (more severe disease in monocultures) to an amplification effect in 2019 (more severe disease in mixtures). The best explanation for this reversal centered on host density (i.e., aboveground biomass), which was initially highest in monoculture, but became highest in mixtures two decades later. Thus, the diversity-disease pattern reversed, but disease consistently increased with host biomass. These results highlight the consistency of N and CO2as drivers of plant disease in the Anthropocene and emphasize the critical role of host biomass—despite potentially variable effects of diversity—for relationships between biodiversity and disease.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available October 16, 2025
-
Abstract Plant functional groups (FGs) differ in their response to global changes, although species within those groups also vary in such responses. Both species and FG responses to global change are likely influenced by species interactions such as inter‐specific competition and facilitation, which are prevalent in species mixtures but not monocultures. As most studies focus on responses of plants growing in either monocultures or mixtures, but rarely both, it remains unclear how interspecific interactions in diverse ecological communities, especially among species in different FGs, modify FG responses to global changes. To address these issues, we leveraged data from a 16‐species, 24‐year perennial grassland experiment to examine plant FG biomass responses to atmospheric CO2, and N inputs at different planted diversity. FGs differed in their responses to N and CO2treatments in monocultures. Such differences were amplified in mixtures, where N enrichment strongly increased C3 grass success at ambient CO2and C4 grass success at elevated CO2. Legumes declined with N enrichment in mixtures at both CO2levels and increased with elevated CO2in the initial years of the experiment. Our results suggest that previous studies that considered responses to global changes in monocultures may underestimate biomass changes in diverse communities where interspecific interactions can amplify responses. Such effects of interspecific interactions on responses of FGs to global change may impact community composition over time and consequently influence ecosystem functions.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Urgent climate action is needed to ensure effectiveness of protected areas for biodiversity benefitsFree, publicly-accessible full text available October 1, 2025
-
Boscutti, Francesco (Ed.)The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work with simulated communities and trait distributions shows sensitivity of functional diversity measures to the number and correlation of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. To address this gap, we used data from six grassland plant communities in Minnesota and New Mexico, USA to test how the number of traits and the correlation between traits used in the calculation of eight functional diversity indices impact the magnitude of functional diversity metrics in real plant communities. We found that most metrics were sensitive to the number of traits used to calculate them, but functional dispersion (FDis), kernel density estimation dispersion (KDE dispersion), and Rao’s quadratic entropy (Rao’s Q) maintained consistent rankings of communities across the range of trait numbers. Despite sensitivity of metrics to trait correlation, there was no consistent pattern between communities as to how metrics were affected by the correlation of traits used to calculate them. We recommend that future use of evenness metrics include sensitivity analyses to ensure results are robust to the number of traits used to calculate them. In addition, we recommend use of FDis, KDE dispersion, and Rao’s Q when ecologically applicable due to their ability to produce consistent rankings among communities across a range of the numbers of traits used to calculate them.more » « lessFree, publicly-accessible full text available September 23, 2025
-
Abstract Surface albedo can affect the energy budget and subsequently cause localized warming or cooling of the climate. When we convert a substantial portion of lands to agriculture, land surface properties are consequently altered, including albedo. Through crop selection and management, one can increase crop albedo to obtain higher levels of localized cooling effects to mitigate global warming. Still, there is little understanding about how distinctive features of a cropping system may be responsible for elevated albedo and consequently for the cooling potential of cultivated lands. To address this pressing issue, we conducted seasonal measurements of surface reflectivity during five growing seasons on annual crops of corn-soybean–winter wheat (Zea mays L.- Glycine max L.Merrill—Triticum aestivum L.; CSW) rotations at three agronomic intensities, a monoculture of perennial switchgrass, and perennial polycultures of early successional and restored prairie grasslands. We found that crop-species, agronomic intensity, seasonality, and plant phenology had significant effects on albedo. The mean ± SD of albedo was highest in perennial crops of switchgrass (Panicum virgatum; 0.179 ± 0.04), intermediate in early successional crops (0.170 ± 0.04), and lowest in a reduced input corn systems with cover crops (0.154 ± 0.02). Thestrongest cooling potentials were found in soybean (−0.450 kg CO2e m−2yr−1) and switchgrass (−0.367 kg CO2e m−2yr−1), with up to −0.265 kg CO2e m−2yr−1of localized climate cooling annually provided by different agroecosystems. We also demonstrated how diverse ecosystems, leaf canopy, and agronomic practices can affect surface reflectivity and provide another potential nature-based solution for reducing global warming at localized scales.more » « less
-
Summary Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems.Using 11 tree‐diversity experiments, we tested tree species richness–community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal‐associated tree species in these relationships.Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees.Our study provides novel explanations for variations in diversity–productivity relationships by suggesting that tree–mycorrhiza interactions can shape productivity in mixed‐species forest ecosystems.more » « lessFree, publicly-accessible full text available August 1, 2025
-
The interaction networks formed by ectomycorrhizal fungi (EMF) and their tree hosts, which are important to both forest recruitment and ecosystem carbon and nutrient retention, may be particularly susceptible to climate change at the boreal–temperate forest ecotone where environmental conditions are changing rapidly. Here, we quantified the compositional and functional trait responses of EMF communities and their interaction networks with two boreal (Pinus banksianaandBetula papyrifera) and two temperate (Pinus strobusandQuercus macrocarpa) hosts to a factorial combination of experimentally elevated temperatures and reduced rainfall in a long-term open-air field experiment. The study was conducted at the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment in Minnesota, USA, where infrared lamps and buried heating cables elevate temperatures (ambient, +3.1 °C) and rain-out shelters reduce growing season precipitation (ambient, ~30% reduction). EMF communities were characterized and interaction networks inferred from metabarcoding of fungal-colonized root tips. Warming and rainfall reduction significantly altered EMF community composition, leading to an increase in the relative abundance of EMF with contact-short distance exploration types. These compositional changes, which likely limited the capacity for mycelial connections between trees, corresponded with shifts from highly redundant EMF interaction networks under ambient conditions to less redundant (more specialized) networks. Further, the observed changes in EMF communities and interaction networks were correlated with changes in soil moisture and host photosynthesis. Collectively, these results indicate that the projected changes in climate will likely lead to significant shifts in the traits, structure, and integrity of EMF communities as well as their interaction networks in forest ecosystems at the boreal–temperate ecotone.more » « less