skip to main content


Search for: All records

Creators/Authors contains: "Ren, Zheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    The class ofAV3Sb5(A=K, Rb, Cs) kagome metals hosts unconventional charge density wave states seemingly intertwined with their low temperature superconducting phases. The nature of the coupling between these two states and the potential presence of nearby, competing charge instabilities however remain open questions. This phenomenology is strikingly highlighted by the formation of two ‘domes’ in the superconducting transition temperature upon hole-doping CsV3Sb5. Here we track the evolution of charge correlations upon the suppression of long-range charge density wave order in the first dome and into the second of the hole-doped kagome superconductor CsV3Sb5−xSnx. Initially, hole-doping drives interlayer charge correlations to become short-ranged with their periodicity diminished along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3Sb5, and reveal a complex landscape of charge correlations within its electronic phase diagram. Our data suggest an inherent 2kfcharge instability and competing charge orders in theAV3Sb5class of kagome superconductors.

     
    more » « less
  3. Abstract

    Charge density waves (CDWs) in kagome metals have been tied to many exotic phenomena. Here, using spectroscopic-imaging scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we study the charge order in kagome metal ScV6Sn6. The similarity of electronic band structures of ScV6Sn6and TbV6Sn6(where charge ordering is absent) suggests that charge ordering in ScV6Sn6is unlikely to be primarily driven by Fermi surface nesting of the Van Hove singularities. In contrast to the CDW state of cousin kagome metals, we find no evidence supporting rotation symmetry breaking. Differential conductance dI/dVspectra show a partial gapΔ1CO ≈ 20 meV at the Fermi level. Interestingly, dI/dVmaps reveal that charge modulations exhibit an abrupt phase shift as a function of energy at energy much higher thanΔ1CO, which we attribute to another spectral gap. Our experiments reveal a distinctive nature of the charge order in ScV6Sn6with fundamental differences compared to other kagome metals.

     
    more » « less
  4. Abstract

    Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe3Sn2as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    In a material prone to a nematic instability, anisotropic strain in principle provides a preferred symmetry-breaking direction for the electronic nematic state to follow. This is consistent with experimental observations, where electronic nematicity and structural anisotropy typically appear hand-in-hand. In this work, we discover that electronic nematicity can be locally decoupled from the underlying structural anisotropy in strain-engineered iron-selenide (FeSe) thin films. We use heteroepitaxial molecular beam epitaxy to grow FeSe with a nanoscale network of modulations that give rise to spatially varying strain. We map local anisotropic strain by analyzing scanning tunneling microscopy topographs, and visualize electronic nematic domains from concomitant spectroscopic maps. While the domains form so that the energy of nemato-elastic coupling is minimized, we observe distinct regions where electronic nematic ordering fails to flip direction, even though the underlying structural anisotropy is locally reversed. The findings point towards a nanometer-scale stiffness of the nematic order parameter.

     
    more » « less