skip to main content


Search for: All records

Creators/Authors contains: "Rosen, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    Biologically inspired design (BID) has gained attention in undergraduate and graduate engineering programs throughout the United States, and more post-secondary institutions are beginning to implement it into their engineering curriculum [1], [2]. However, little has been done to introduce BID concepts more formally into the K-12 curriculum. Consequently, a research study funded by the National Science Foundation focused on developing a BID integrated engineering curriculum for high school students. The curriculum is designed to integrate BID into the engineering design process (EDP) by leveraging analogical design tools that facilitate a transfer of biological strategies to design challenges. This enables students to understand both the engineering problem and the biological system that could be used to inspire design solutions. In this paper, we describe students’ application of BID integration in the engineering design process and their experiences utilizing BID as they solve design challenges. The curriculum was pilot tested in two 9th grade engineering classrooms across two schools during Spring 2022. Data was collected from four groups of students (n=12) enrolled in the engineering courses across two schools. The study includes classroom observations, student artifacts, and student focus groups. We utilized qualitative content analysis, a descriptive approach to analyzing student data [3], [4], to uncover the meaning and presence of text, messages, images, and transcriptions of dialogues [4]. In this study, we aim to capture the evidence of students’ experiences and engagement with BID concepts. The preliminarily findings illustrate that student groups enjoyed BID activities presented in the curriculum as they promoted students’ exploration of biological systems. BID integration allowed students to view nature differently, which some students indicated they had not previously employed for their design solutions. Although some students mentioned BID activities that helped them during the brainstorming phase of the design process, they were unable to explain BID integration in their final design solutions, unless prompted by the teacher. Furthermore, across the student groups, students indicated that prototype and test was the most engaging stage of the EDP since during this stage they were able to test their designs. This research is novel in its focus on understanding high school students’ experiences with the integration of BID in engineering and has important implications for diversifying engineering in K-12 education. 
    more » « less
  2. This innovative practice work in progress paper presents the Biologically Inspired Design for Engineering Education (BTRDEE) project, to create socially relevant, accessible, highly-contextualized biologically inspired design experiences that can be disseminated to high school audiences engineering audiences in Georgia and nationally. Curriculum units arc 6-10 weeks in duration and will meet many standards for high school engineering courses in Georgia. There will be three curriculum units (one for each engineering course in the 3-course pathway), each building skills in engineering design and specific skills for BID. Currently in its second year, BIRDEE has developed its first unit of curriculum and has hosted its first professional development with 4 pilot teachers in the summer of 2020. The BIRDEE curriculum situates challenges within socially relevant contexts and provides cutting-edge biological scenarios to ignite creative and humanistic engineering experiences to 1) drive greaterengagement in engineering, particularly among women, 2) improve student engineering skills, especially problem definition and ideation skills, and 3) increase students awareness of the connection and impacts between the engineered and living worlds. This paper describes the motivation for the BIRDEE project, the learning goals for the curriculum, and a description of the first unit. We provide reflections and feedback from teacher work and focus groups during our summer professional development and highlight the challenges associated with building BID competency across biology and engineering to equip teachers with the skills they need to teach the BIRDEE units. These lessons can be applied to teaching BID more broadly, as its multidisciplinary nature creates challenges (and opportunities) for teaching and learning engineering design. 
    more » « less
  3. This innovative practice work in progress paper presents Biologically inspired design (BID) to transfer design principles identified in nature to human-centered design problems. The Biologically Inspired Design for Engineering Education (BIRDEE) program uses biologically inspired design to teach high school engineering in a way that uniquely engages students in the natural world. For high school students, identifying natural systems’ analogues for human design problems can be challenging. Furthermore, it is often the case that students focus on and transfer superficial structures, rather than underlying design principles. Based on the Structure-Behavior-Function (SBF) design ontology, we developed a modified cognitive scaffold called Structure- Function-Mechanism (SFM) to assist students and teachers with identifying functionally similar biological analogies and identifying and transferring design principles. In this paper we describe SFM and its importance in BID and our observations from teaching SFM to high school teachers during a multi-week professional development workshop in the summer of 2020. Based on teachers’ work artifacts, transcriptions of discussions, and focus groups, we highlight the challenges of teaching SFM and our plans to scaffold this important concept for students and teachers alike. 
    more » « less
  4. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms 
    more » « less
  5. null (Ed.)
    Abstract Background The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. Methods We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout ( CD8 and CD4 ) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. Results We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8 + T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8 + T-cell function. TCGA pan-cancer data confirmed that CD8 low Platelet high patients have a significantly lower survival probability compared to CD8 high Platelet low . Conclusions CD8 + T cells inhibit metastasis. When the balance between CD8 + T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8 + T-cell function. 
    more » « less
  6. Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both these cancer types associate with metastasis and resistance to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related survival we need to understand and circumvent, the mechanisms through which these tumors become therapy resistant. In this review, we discuss new information and complementary perspectives to inform combination treatment strategies to expand and improve the anti-tumor responses of currently available clinical immune checkpoint inhibitors. 
    more » « less