skip to main content

Search for: All records

Creators/Authors contains: "Rubinfeld, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a sublinear time algorithm that allows one to sample multiple edges from a distribution that is pointwise ϵ-close to the uniform distribution, in an amortized-efficient fashion. We consider the adjacency list query model, where access to a graph G is given via degree and neighbor queries. The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum (SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and Rosenbaum provided upper and lower bounds of Θ∗(n/ √ m) for sampling a single edge in generalmore »graphs (where O ∗(·) suppresses poly(1/ϵ) and poly(log n) dependencies). We ask whether the query complexity lower bound for sampling a single edge can be circumvented when multiple samples are required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing phase? We answer in the affirmative. We present an algorithm that, if one knows the number of required samples q in advance, has an overall cost that is sublinear in q, namely, O∗(√ q · (n/ √ m)), which is strictly preferable to O∗(q · (n/ √ m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum. Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved that this bound is essentially optimal.« less
  2. Counting and uniformly sampling motifs in a graph are fundamental algorithmic tasks with numerous applications across multiple fields. Since these problems are computationally expensive, recent efforts have focused on devising sublinear-time algorithms for these problems. We consider the model where the algorithm gets a constant size motif H and query access to a graph G, where the allowed queries are degree, neighbor, and pair queries, as well as uniform edge sample queries. In the sampling task, the algorithm is required to output a uniformly distributed copy of H in G (if one exists), and in the counting task it ismore »required to output a good estimate to the number of copies of H in G. Previous algorithms for the uniform sampling task were based on a decomposition of H into a collection of odd cycles and stars, denoted D∗(H) = {Ok1 , ...,Okq , Sp1 , ..., Spℓ19 }. These algorithms were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower bounds were known. We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, for any motif H whose decomposition contains at least two components or at least one star, is always preferable. The main ingredient leading to this improvement is an improved uniform algorithm for sampling stars, which might be of independent interest, as it allows to sample vertices according to the p-th moment of the degree distribution. We further show how to use our sampling algorithm to get an approximate counting algorithm, with essentially the same complexity. Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at least one odd cycle. That is, we prove that for any decomposition D that contains at least one odd cycle, there exists a motif HD 30 with decomposition D, and a family of graphs G, so that in order to output a uniform copy of H in a uniformly chosen graph in G, the number of required queries matches our upper bound. These are the first lower bounds for motifs H with a nontrivial decomposition, i.e., motifs that have more than a single component in their decomposition.« less
  3. Aggregating data is fundamental to data analytics, data exploration, and OLAP. Approximate query processing (AQP) techniques are often used to accelerate computation of aggregates using samples, for which confidence intervals (CIs) are widely used to quantify the associated error. CIs used in practice fall into two categories: techniques that are tight but not correct, i.e., they yield tight intervals but only offer asymptoticguarantees,makingthem unreliable, or techniques that are correct but not tight, i.e., they offer rigorous guarantees, but are overly conservative, leading to confidence intervals that are too loose to be useful. In this paper, we develop a CI techniquemore »that is both correct and tighter than traditional approaches. Starting from conservative CIs, we identify two issues they often face: pessimistic mass allocation (PMA) and phantom outlier sensitivity (PHOS). By developing a novel range-trimming technique for eliminating PHOS and pairing it with known CI techniques without PMA, we develop a technique for computing CIs with strong guarantees that requires fewer samples for the same width. We implement our techniques underneath a sampling-optimized in-memory column store and show how they accelerate queries involving aggregates on real datasets with typical speedups on the order of 10× over both traditional AQP-with-guarantees and exact methods, all while obeying accuracy constraints.« less
  4. We design a Local Computation Algorithm (LCA) for the set cover problem. Given a set system where each set has size at most s and each element is contained in at most t sets, the algorithm reports whether a given set is in some fixed set cover whose expected size is O(log s) times the minimum fractional set cover value. Our algorithm requires sO(log s) tO(log s+log log t)) queries. This result improves upon the application of the reduction of [Parnas and Ron, TCS’07] on the result of [Kuhn et al., SODA’06], which leads to a query complexity of (st)more »O(log s · log t). To obtain this result, we design a parallel set cover algorithm that admits an efficient simulation in the LCA model by using a sparsification technique introduced in [Ghaffari and Uitto, SODA’19] for the maximal independent set problem. The parallel algorithm adds a random subset of the sets to the solution in a style similar to the PRAM algorithm of [Berger et al., FOCS’89]. However, our algorithm differs in the way that it never revokes its decisions, which results in a fewer number of adaptive rounds. This requires a novel approximation analysis which might be of independent interest.« less
  5. The noise sensitivity of a Boolean function f: {0,1}^n - > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noise-sensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have lowmore »noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone function (for example the class of unate functions consists of all the functions that can be made monotone by reorienting some of their coordinates [O'Donnell, 2014]). Specifically, we study the algorithmic problem of approximating NS_{delta}[f] for monotone f, given the promise that NS_{delta}[f] >= 1/n^{C} for constant C, and for delta in the range 1/n <= delta <= 1/2. For such f and delta, we give a randomized algorithm performing O((min(1,sqrt{n} delta log^{1.5} n))/(NS_{delta}[f]) poly (1/epsilon)) queries and approximating NS_{delta}[f] to within a multiplicative factor of (1 +/- epsilon). Given the same constraints on f and delta, we also prove a lower bound of Omega((min(1,sqrt{n} delta))/(NS_{delta}[f] * n^{xi})) on the query complexity of any algorithm that approximates NS_{delta}[f] to within any constant factor, where xi can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n. We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield new lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias.« less
  6. There has been significant study on the sample complexity of testing properties of distributions over large domains. For many properties, it is known that the sample complexity can be substantially smaller than the domain size. For example, over a domain of size n, distinguishing the uniform distribution from distributions that are far from uniform in ℓ1-distance uses only O(n−−√) samples. However, the picture is very different in the presence of arbitrary noise, even when the amount of noise is quite small. In this case, one must distinguish if samples are coming from a distribution that is ϵ-close to uniform frommore »the case where the distribution is (1−ϵ)-far from uniform. The latter task requires nearly linear in n samples (Valiant, 2008; Valiant and Valiant, 2017a). In this work, we present a noise model that on one hand is more tractable for the testing problem, and on the other hand represents a rich class of noise families. In our model, the noisy distribution is a mixture of the original distribution and noise, where the latter is known to the tester either explicitly or via sample access; the form of the noise is also known \emph{a priori}. Focusing on the identity and closeness testing problems leads to the following mixture testing question: Given samples of distributions p,q1,q2, can we test if p is a mixture of q1 and q2? We consider this general question in various scenarios that differ in terms of how the tester can access the distributions, and show that indeed this problem is more tractable. Our results show that the sample complexity of our testers are exactly the same as for the classical non-mixture case.« less
  7. In this work, we consider the sample complexity required for testing the monotonicity of distributions over partial orders. A distribution p over a poset is monotone if, for any pair of domain elements x and y such that x ⪯ y, p(x) ≤ p(y). To understand the sample complexity of this problem, we introduce a new property called bigness over a finite domain, where the distribution is T-big if the minimum probability for any domain element is at least T. We establish a lower bound of Ω(n/ log n) for testing bigness of distributions on domains of size n. Wemore »then build on these lower bounds to give Ω(n/ log n) lower bounds for testing monotonicity over a matching poset of size n and significantly improved lower bounds over the hypercube poset. We give sublinear sample complexity bounds for testing bigness and for testing monotonicity over the matching poset. We then give a number of tools for analyzing upper bounds on the sample complexity of the monotonicity testing problem. The previous lower bound for testing Monotonicity of« less
  8. In many situations, sample data is obtained from a noisy or imperfect source. In order to address such corruptions, this paper introduces the concept of a sampling corrector. Such algorithms use structure that the distribution is purported to have, in order to allow one to make “on-the-fly” corrections to samples drawn from probability distributions. These algorithms then act as filters between the noisy data and the end user. We show connections between sampling correctors, distribution learning algorithms, and distribution property testing algorithms. We show that these connections can be utilized to expand the applicability of known distribution learning and propertymore »testing algorithms as well as to achieve improved algorithms for those tasks. As a first step, we show how to design sampling correctors using proper learning algorithms. We then focus on the question of whether algorithms for sampling correctors can be more efficient in terms of sample complexity than learning algorithms for the analogous families of distributions. When correcting monotonicity, we show that this is indeed the case when also granted query access to the cumulative distribution function. We also obtain sampling correctors for monotonicity even without this stronger type of access, provided that the distribution be originally very close to monotone (namely, at a distance $O(1/\log^2 n)$). In addition to that, we consider a restricted error model that aims at capturing “missing data” corruptions. In this model, we show that distributions that are close to monotone have sampling correctors that are significantly more efficient than achievable by the learning approach. We consider the question of whether an additional source of independent random bits is required by sampling correctors to implement the correction process. We show that for correcting close-to-uniform distributions and close-to-monotone distributions, no additional source of random bits is required, as the samples from the input source itself can be used to produce this randomness.« less
  9. We study the question of testing structured properties (classes) of discrete distributions. Specifically, given sample access to an arbitrary distribution D over [n] and a property P, the goal is to distinguish between D ∈ P and ℓ1(D, P) > ε. We develop a general algorithm for this question, which applies to a large range of “shape-constrained” properties, including monotone, log-concave, t-modal, piecewise-polynomial, and Poisson Binomial distributions. Moreover, for all cases considered, our algorithm has near-optimal sample complexity with regard to the domain size and is computationally efficient. For most of these classes, we provide the first non-trivial tester inmore »the literature. In addition, we also describe a generic method to prove lower bounds for this problem, and use it to show our upper bounds are nearly tight. Finally, we extend some of our techniques to tolerant testing, deriving nearly–tight upper and lower bounds for the corresponding questions.« less
  10. We study the Fractional Set Cover problem in the streaming model. That is, we consider the relaxation of the set cover problem over a universe of n elements and a collection of m sets, where each set can be picked fractionally, with a value in [0,1]. We present a randomized (1+a)-approximation algorithm that makes p passes over the data, and uses O(polylog(m,n,1/a) (mn^(O(1/(pa)))+n)) memory space. The algorithm works in both the set arrival and the edge arrival models. To the best of our knowledge, this is the first streaming result for the fractional set cover problem. We obtain our resultsmore »by employing the multiplicative weights update framework in the streaming settings.« less