skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Russell, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high‐frequency, ecosystem‐scale CO2and CH4flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT‐Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2and CH4emissions. Using a model‐data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4module also explained the majority of variance in CH4emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT‐Tidal‐CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4emissions, and (d) CH4responses to non‐periodic changes in salinity. 
    more » « less
  2. Abstract The primary and secondary fragmentation dynamics of iodobenzene following its ionization at 120 eV were determined using three-dimensional velocity map imaging and covariance analysis. Site-selective iodine 4d ionization was used to populate a range of excited polycationic parent states, which primarily broke apart at the carbon-iodine bond to produce I+with phenyl or phenyl-like cations (CnH x + or CnH x 2 + , withn  =  1 – 6 andx  =  1 – 5). The molecular products were produced with varying degrees of internal excitation and dehydrogenation, leading to stable and unstable outcomes. This further allowed the secondary dynamics of C 6 H x 2 + intermediates to be distinguished using native-frame covariance analysis, which isolated these processes in their own centre-of-mass reference frames. The mass resolution of the imaging mass spectrometer used for these measurements enabled the primary and secondary reaction channels to be specified at the level of individual hydrogen atoms, demonstrating the ability of covariance analysis to comprehensively measure the competing fragmentation channels of aryl cations, including those involving intermediate steps. 
    more » « less
  3. Abstract Structural imaging of transient excited-state species is a key goal of molecular physics, promising to unveil rich information about the dynamics underpinning photochemical transformations. However, separating the electronic and nuclear contributions to the spectroscopic observables is challenging, and typically requires the application of high-level theory. Here, we employ site-selective ionisation via ultrashort soft X-ray pulses and time-resolved Coulomb explosion imaging to interrogate structural dynamics of the ultraviolet photochemistry of carbon disulfide. This prototypical system exhibits the complex motifs of polyatomic photochemistry, including strong non-adiabatic couplings, vibrational mode couplings, and intersystem crossing. Immediately following photoexcitation, we observe Coulomb explosion signatures of highly bent and stretched excited-state geometries involved in the photodissociation. Aided by a model to interpret such changes, we build a comprehensive picture of the photoinduced nuclear dynamics that follows initial bending and stretching motions, as the reaction proceeds towards photodissociation. 
    more » « less
  4. null (Ed.)
    Abstract The McMurdo Dry Valley region is the largest ice-free area of Antarctica. Ephemeral streams flow here during the austral summer, transporting glacial meltwater to perennially ice-covered, closed basin lakes. The chemistry of 24 Taylor Valley streams was examined over the two-decade period of monitoring from 1993 to 2014, and the geochemical behavior of two streams of contrasting physical and biological character was monitored across the seven weeks of the 2010–2011 flow season. Four species dominate stream solute budgets: HCO3–, Ca2+, Na+, and Cl–, with SO42–, Mg2+, and K+ present in significantly lesser proportions. All streams contain dissolved silica at low concentrations. Across Taylor Valley, streams are characterized by their consistent anionic geochemical fingerprint of HCO3 > Cl > SO4, but there is a split in cation composition between 14 streams with Ca > Na > Mg > K and 10 streams with Na > Ca > Mg > K. Andersen Creek is a first-order proglacial stream representative of the 13 short streams that flow <1.5 km from source to gage. Von Guerard is representative of 11 long streams 2–7 km in length characterized by extensive hyporheic zones. Both streams exhibit a strong daily cycle for solute load, temperature, dissolved oxygen, and pH, which vary in proportion to discharge. A well-expressed diurnal co-variation of pH with dissolved oxygen is observed for both streams that reflects different types of biological control. The relative consistency of Von Guerard composition over the summer flow season reflects chemostatic regulation, where water in transient storage introduced during times of high streamflow has an extended opportunity for water-sediment interaction, silicate mineral dissolution, and pore-water exchange. 
    more » « less
  5. We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot −1 ). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. 
    more » « less