Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

A normalizing flow is an invertible mapping between an arbitrary probability distribution and a standard normal distribution; it can be used for density estimation and statistical inference. Computing the flow follows the change of variables formula and thus requires invertibility of the mapping and an efficient way to compute the determinant of its Jacobian. To satisfy these requirements, normalizing flows typically consist of carefully chosen components. Continuous normalizing flows (CNFs) are mappings obtained by solving a neural ordinary differential equation (ODE). The neural ODE's dynamics can be chosen almost arbitrarily while ensuring invertibility. Moreover, the logdeterminant of the flow's Jacobianmore »

We propose a neural network approach for solving highdimensional optimal control problems. In particular, we focus on multiagent control problems with obstacle and collision avoidance. These problems immediately become highdimensional, even for moderate phasespace dimensions per agent. Our approach fuses the Pontryagin Maximum Principle and HamiltonJacobiBellman (HJB) approaches and parameterizes the value function with a neural network. Our approach yields controls in a feedback form for quick calculation and robustness to moderate disturbances to the system. We train our model using the objective function and optimality conditions of the control problem. Therefore, our training algorithm neither involves a data generationmore »

Deep convolutional neural networks have revolutionized many machine learning and computer vision tasks, however, some remaining key challenges limit their wider use. These challenges include improving the network's robustness to perturbations of the input image and the limited ``field of view'' of convolution operators. We introduce the IMEXnet that addresses these challenges by adapting semiimplicit methods for partial differential equations. Compared to similar explicit networks, such as residual networks, our network is more stable, which has recently shown to reduce the sensitivity to small changes in the input features and improve generalization. The addition of an implicit step connects allmore »

Convolutional Neural Networks (CNNs) filter the input data using spatial convolution operators with compact stencils. Commonly, the convolution operators couple features from all channels, which leads to immense computational cost in the training of and prediction with CNNs. To improve the efficiency of CNNs, we introduce lean convolution operators that reduce the number of parameters and computational complexity, and can be used in a wide range of existing CNNs. Here, we exemplify their use in residual networks (ResNets), which have been very reliable for a few years now and analyzed intensively. In our experiments on three image classification problems, themore »