Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 27, 2025
-
In this paper, we propose a method to repurpose the multi-user MIMO downlink transmission for joint wireless communication and imaging. The key idea is to introduce the concept of virtual users in the communication coverage area and use the existing MUMIMO beamforming methods to jointly beamform towards real and virtual users. The virtual users are placed to complement the locations of actual users, with the objective to illuminate the scene as uniformly as possible. We study a single-parameter tradeoff, introduced by a power split parameter between real and virtual users. We demonstrate via simulated examples that the virtual user concept is effective in providing a scalable imaging and communications performance tradeoff for cases where the real users are clustered in small geographical areas.more » « lessFree, publicly-accessible full text available September 27, 2025
-
Multiple-input, multiple-output (MIMO) radars can estimate radial velocities of moving objects, but not their tangential velocities. In this paper, we propose to exploit multi-bounce scattering in the environment to form an effective multi-“look” synthetic aperture and enable estimation of a moving object's entire velocity vector - both tangential and radial velocities. The proposed approach enables instantaneous velocity vector estimation with a single MIMO radar, without additional sensors or assumptions about the object size. The only requirement of our approach is the existence of at least one resolvable multi-bounce path to the object from a static landmark in the environment. The approach is validated both in theory and simulation.more » « lessFree, publicly-accessible full text available July 3, 2025
-
Free, publicly-accessible full text available June 9, 2025
-
Multiple-input, multiple-output (MIMO) radars can estimate radial velocities of moving objects, but not their tangential velocities. In this paper, we propose to exploit multi-bounce scattering in the environment to form an effective multi-“look” synthetic aperture and enable estimation of a moving object's entire velocity vector - both tangential and radial velocities. The proposed approach enables instantaneous velocity vector estimation with a single MIMO radar, without additional sensors or assumptions about the object size. The only requirement of our approach is the existence of at least one resolvable multi-bounce path to the object from a static landmark in the environment. The approach is validated both in theory and simulation.more » « lessFree, publicly-accessible full text available May 20, 2025
-
Abstract—As wireless communication systems strive to improve spectral efficiency, there has been a growing interest in employing machine learning (ML)-based approaches for adaptive modulation and coding scheme (MCS) selection. In this paper, we introduce a new adaptive MCS selection framework for massive MIMO systems that operates without any feedback from users by solely relying on instantaneous uplink channel estimates. Our proposed method can effectively operate in multi-user scenarios where user feedback imposes excessive delay and bandwidth overhead. To learn the mapping between the user channel matrices and the optimal MCS level of each user, we develop a Convolutional Neural Network (CNN)-Long Short-Term Memory Network (LSTM)-based model and compare the performance with the state-of-the-art methods. Finally, we validate the effectiveness of our algorithm by evaluating it experimentally using real-world datasets collected from the RENEW massive MIMO platform. Index Terms—Adaptive MCS Selection, Machine Learning, Convolutional Neural Network, Long Short-Term Memory Network, Channel State Information, Feedback Delay.more » « less
-
Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle contrast imaging to provide deep tissue blood flow information. However, the current speckle contrast tomography techniques suffer from poor spatial resolution and involve both computation and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the skin. Our approach replaces the traditional forward model using diffuse approximations with Monte-Carlo simulations-based convolutional forward model, which enables us to develop an improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the reflection geometry. We also conduct human experiments to demonstrate that our approach can detect reduced flow in major blood vessels during vascular occlusion.more » « less
-
The large number of antennas in massive MIMO systems allows the base station to communicate with multiple users at the same time and frequency resource with multi-user beamforming. However, highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints among the users. In this paper, we consider the resource scheduling problem for massive MIMO systems with its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning (DRL) to solve problems with large action sets, we propose \name{}, a dynamic scheduler for massive MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors (KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our proposed model in various channel conditions. Our results show that our proposed model performs very close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with more than one order of magnitude lower computational complexity in medium network sizes where Opt-PF is computationally feasible. Our results also show the feasibility and high performance of our proposed scheduler in networks with a large number of users and resource blocks.more » « less