Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we study the “decoding” problem for discrete-time, stochastic hybrid systems with linear dynamics in each mode. Given an output trace of the system, the decoding problem seeks to construct a sequence of modes and states that yield a trace “as close as possible” to the original output trace. The decoding problem generalizes the state estimation problem, and is applicable to hybrid systems with non-determinism. The decoding problem is NP-complete, and can be reduced to solving a mixed-integer linear program (MILP). In this paper, we decompose the decoding problem into two parts: (a) finding a sequence of discrete modes and transitions; and (b) finding corresponding continuous states for the mode/transition sequence. In particular, once a sequence of modes/transitions is fixed, the problem of “filling in” the continuous states is performed by a linear programming problem. In order to support the decomposition, we “cover” the set of all possible mode/transition sequences by a finite subset. We use well-known probabilistic arguments to justify a choice of cover with high confidence and design randomized algorithms for finding such covers. Our approach is demonstrated on a series of benchmarks, wherein we observe that relatively tiny fraction of the possible mode/transition sequences canmore »Free, publicly-accessible full text available May 4, 2023
-
Deshmukh, Jyotirmoy V. ; Havelund, Klaus ; Perez, Ivan (Ed.)Reachability analysis is a fundamental problem in verification that checks for a given model and set of initial states if the system will reach a given set of unsafe states. Its importance lies in the ability to exhaustively explore the behaviors of a model over a finite or infinite time horizon. The problem of reachability analysis for Cyber-Physical Systems (CPS) is especially challenging because it involves reasoning about the continuous states of the system as well as its switching behavior. Each of these two aspects can by itself cause the reachability analysis problem to be undecidable. In this paper, we survey recent progress in this field beginning with the success of hybrid systems with affine dynamics. We then examine the current state-of-the-art for CPS with nonlinear dynamics and those driven by ``learning-enabled'' components such as neural networks. We conclude with an examination of some promising directions and open challenges.
-
Drăgoi, C. ; Mukherjee, S. ; Namjoshi, K. (Ed.)This paper studies the problem of range analysis for feedforward neural networks, which is a basic primitive for applications such as robustness of neural networks, compliance to specifications and reachability analysis of neural-network feedback systems. Our approach focuses on ReLU (rectified linear unit) feedforward neural nets that present specific difficulties: approaches that exploit derivatives do not apply in general, the number of patterns of neuron activations can be quite large even for small networks, and convex approximations are generally too coarse. In this paper, we employ set-based methods and abstract interpretation that have been very successful in coping with similar difficulties in classical program verification. We present an approach that abstracts ReLU feedforward neural networks using tropical polyhedra. We show that tropical polyhedra can efficiently abstract ReLU activation function, while being able to control the loss of precision due to linear computations. We show how the connection between ReLU networks and tropical rational functions can provide approaches for range analysis of ReLU neural networks. We report on a preliminary evaluation of our approach using a prototype implementation.
-
We propose a predictive runtime monitoring framework that forecasts the distribution of future positions of mobile robots in order to detect and avoid impending property violations such as collisions with obstacles or other agents. Our approach uses a restricted class of temporal logic formulas to represent the likely intentions of the agents along with a combination of temporal logic-based optimal cost path planning and Bayesian inference to compute the probability of these intents given the current trajectory of the robot. First, we construct a large but finite hypothesis space of possible intents represented as temporal logic formulas whose atomic propositions are derived from a detailed map of the robot’s workspace. Next, our approach uses real-time observations of the robot’s position to update a distribution over temporal logic formulae that represent its likely intent. This is performed by using a combination of optimal cost path planning and a Boltzmann noisy rationality model. In this manner, we construct a Bayesian approach to evaluating the posterior probability of various hypotheses given the observed states and actions of the robot. Finally, we predict the future position of the robot by drawing posterior predictive samples using a Monte-Carlo method. We evaluate our framework using twomore »
-
In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First, we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next, we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers.
-
null (Ed.)We present a predictive runtime monitoring technique for estimating future vehicle positions and the probability of collisions with obstacles. Vehicle dynamics model how the position and velocity change over time as a function of external inputs. They are commonly described by discrete-time stochastic models. Whereas positions and velocities can be measured, the inputs (steering and throttle) are not directly measurable in these models. In our paper, we apply Bayesian inference techniques for real-time estimation, given prior distribution over the unknowns and noisy state measurements. Next, we pre-compute the set-valued reachability analysis to approximate future positions of a vehicle. The pre-computed reachability sets are combined with the posterior probabilities computed through Bayesian estimation to provided a predictive verification framework that can be used to detect impending collisions with obstacles. Our approach is evaluated using the coordinated-turn vehicle model for a UAV using on-board measurement data obtained from a flight test of a Talon UAV. We also compare the results with sampling-based approaches. We find that precomputed reachability analysis can provide accurate warnings up to 6 seconds in advance and the accuracy of the warnings improve as the time horizon is narrowed from 6 to 2 seconds. The approach also outperforms samplingmore »
-
In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers.