skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sears, Michael W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although predators can deter an animal from regulating its body temperature by basking or shuttling, this response to predation should depend on the spatial distribution of thermal resources. By simulating predation risk, we showed that movement, thermoregulation and corticosterone of male lizards Sceloporus jarrovi depended on the spatial distribution of shade. Simulated risk caused lizards to move less, thermoregulate worse and circulate more corticosterone than they did without risk. However, a patchier distribution of shade enabled lizards to move more, thermoregulate better and circulate less corticosterone when exposed to a simulated predator. In the absence of simulated risk, lizards in patchier environments moved less, thermoregulated better and circulated less corticosterone, indicating the distribution of shade also affected the energetic cost of thermoregulation. This study provides the first test of a spatial theory of thermoregulation under the perceived risk of predation. 
    more » « less
  2. Abstract For more than 70 years, Hutchinson’s concept of the fundamental niche has guided ecological research. Hutchinson envisioned the niche as a multidimensional hypervolume relating the fitness of an organism to relevant environmental factors. Here, we challenge the utility of the concept to modern ecologists, based on its inability to account for environmental variation and phenotypic plasticity. We have ample evidence that the frequency, duration, and sequence of abiotic stress influence the survivorship and performance of organisms. Recent work shows that organisms also respond to the spatial configuration of abiotic conditions. Spatiotemporal variation of the environment interacts with the genotype to generate a unique phenotype at each life stage. These dynamics cannot be captured adequately by a multidimensional hypervolume. Therefore, we recommend that ecologists abandon the niche as a tool for predicting the persistence of species and embrace mechanistic models of population growth that incorporate spatiotemporal dynamics. 
    more » « less
  3. Abstract Hybridization between species affects biodiversity and population sustainability in numerous ways, many of which depend on the fitness of the hybrid relative to the parental species. Hybrids can exhibit fitter phenotypes compared to the parental lineages, and this ‘hybrid vigour’ can then lead to the extinction of one or both parental lines.In this study, we analysed the relationship between water loss and gas exchange to compare physiological performance among three tiger salamander genotypes—the native California tiger salamander (CTS), the invasive barred tiger salamanders (BTS) and CTS × BTS hybrids across multiple temperatures (13.5°C, 20.5°C and 23.5°C). We developed a new index of performance, the water‐gas exchange ratio (WGER), which we define as the ratio of gas exchange to evaporative water loss (μLVO2/μL H2O). The ratio describes the ability of an organism to support energetically costly activities with high levels of gas exchange while simultaneously limiting water loss to lower desiccation risk. We used flow through respirometry to measure the thermal sensitivity of metabolic rate and resistance to water loss of each salamander genotype to compare indices of physiological performance.We found that temperature had a significant effect on metabolic rate and resistance to water loss, with both traits increasing as temperatures warmed. Across genotypes, we found that hybrids have a higher WGER than the native CTS, owing to a higher metabolic rate despite having a lower resistance to water loss.These results provide a greater insight into the physiological mechanisms driving hybrid vigour and offer a potential explanation for the rapid spread of salamander hybrids. More broadly, our introduction of the WGER may allow for species‐ or lineage‐wide comparisons of physiological performance across changing environmental conditions, highlighting the insight that can be gleaned from multitrait analysis of organism performance. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Over the past decade, ecologists and physiologists alike have acknowledged the importance of environmental heterogeneity. Meaningful predictions of the responses of organisms to climate will require an explicit understanding of how organismal behavior and physiology are affected by such heterogeneity. Furthermore, the responses of organisms themselves are quite heterogeneous: physiology and behavior vary over different time scales and across different life stages, and because physiological systems do not operate in isolation of one another, they need to be considered in a more integrated fashion. Here, we review case studies from our laboratories to highlight progress that has been made along these fronts and generalizations that might be made to other systems, particularly in the context of predicting responses to climate change. 
    more » « less