skip to main content


Search for: All records

Creators/Authors contains: "Seidl, Rupert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2025
  2. Many natural disturbances have a strong climate forcing, and concern is rising about how ecosystems will respond to disturbance regimes to which they are not adapted. Novelty can arise either as attributes of the disturbance regime (e.g., frequency, severity, duration) shift beyond their historical ranges of variation or as new disturbance agents not present historically emerge. How much novelty ecological systems can absorb and whether changing disturbance regimes will lead to novel outcomes is determined by the ecological responses of communities, which are also subject to change. Powerful conceptual frameworks exist for anticipating consequences of novel disturbance regimes, but these remain challenging to apply in real-world settings. Nonlinear relationships (e.g., tipping points, feedbacks) are of particular concern because of their disproportionate effects. Future research should quantify the rise of novelty in disturbance regimes and assess the capacity of ecosystems to respond to these changes. Novel disturbance regimes will be potent catalysts for ecological change. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Abstract. Climate change and increased fire are eroding theresilience of boreal forests. This is problematic because boreal vegetationand the cold soils underneath store approximately 30 % of all terrestrialcarbon. Society urgently needs projections of where, when, and why borealforests are likely to change. Permafrost (i.e., subsurface material thatremains frozen for at least 2 consecutive years) and the thicksoil-surface organic layers (SOLs) that insulate permafrost are importantcontrols of boreal forest dynamics and carbon cycling. However, both arerarely included in process-based vegetation models used to simulate futureecosystem trajectories. To address this challenge, we developed acomputationally efficient permafrost and SOL module named the Permafrost andOrganic LayEr module for Forest Models (POLE-FM) that operates at finespatial (1 ha) and temporal (daily) resolutions. The module mechanisticallysimulates daily changes in depth to permafrost, annual SOL accumulation, andtheir complex effects on boreal forest structure and functions. We coupledthe module to an established forest landscape model, iLand, and benchmarkedthe model in interior Alaska at spatial scales of stands (1 ha) tolandscapes (61 000 ha) and over temporal scales of days to centuries. Thecoupled model generated intra- and inter-annual patterns of snowaccumulation and active layer depth (portion of soil column that thawsthroughout the year) generally consistent with independent observations in17 instrumented forest stands. The model also represented the distributionof near-surface permafrost presence in a topographically complex landscape.We simulated 39.3 % of forested area in the landscape as underlain bypermafrost, compared to the estimated 33.4 % from the benchmarkingproduct. We further determined that the model could accurately simulate mossbiomass, SOL accumulation, fire activity, tree species composition, andstand structure at the landscape scale. Modular and flexible representationsof key biophysical processes that underpin 21st-century ecologicalchange are an essential next step in vegetation simulation to reduceuncertainty in future projections and to support innovative environmentaldecision-making. We show that coupling a new permafrost and SOL module to anexisting forest landscape model increases the model's utility for projectingforest futures at high latitudes. Process-based models that representrelevant dynamics will catalyze opportunities to address previouslyintractable questions about boreal forest resilience, biogeochemicalcycling, and feedbacks to regional and global climate.

     
    more » « less
  4. Climate change is predicted to change forest composition, decrease carbon, and increase disturbance, with some forests at high risk of all three. 
    more » « less
  5. Abstract

    Inter-annual climate variability (hereafter climate variability) is increasing in many forested regions due to climate change. This variability could have larger near-term impacts on forests than decadal shifts in mean climate, but how forests will respond remains poorly resolved, particularly at broad scales. Individual trees, and even forest communities, often have traits and ecological strategies—the legacies of exposure to past variable conditions—that confer tolerance to subsequent climate variability. However, whether local legacies also shape global forest responses is unknown. Our objective was to assess how past and current climate variability influences global forest productivity. We hypothesized that forests exposed to large climate variability in the past would better tolerate current climate variability than forests for which past climate was relatively stable. We used historical (1950–1969) and contemporary (2000–2019) temperature, precipitation, and vapor pressure deficit (VPD) and the remotely sensed enhanced vegetation index (EVI) to quantify how historical and contemporary climate variability relate to patterns of contemporary forest productivity. Consistent with our hypothesis, forests exposed to large temperature variability in the past were more tolerant of contemporary temperature variability than forests where past temperatures were less variable. Forests were 19-fold times less sensitive to contemporary temperature variability where historical inter-annual temperature variability was 0.66 °C (two standard deviations) greater than the global average historical temperature variability. We also found that larger increases in temperature variability between the two study periods often eroded the tolerance conferred by the legacy effects of historical temperature variability. However, the hypothesis was not supported in the case of precipitation and VPD variability, potentially due to physiological tradeoffs inherent in how trees cope with dry conditions. We conclude that the sensitivity of forest productivity to imminent increases in temperature variability may be partially predictable based on the legacies of past conditions.

     
    more » « less
  6. Watt, Michael (Ed.)
    Purpose of Review Outbreaks of tree-killing bark beetles have reached unprecedented levels in conifer forests in the northern hemisphere and are expected to further intensify due to climate change. In parts of Europe, bark beetle outbreaks and efforts to manage them have even triggered social unrests and political instability. These events have increasingly challenged traditional responses to outbreaks, and highlight the need for a more comprehensive management framework. Recent Findings Several synthesis papers on different aspects of bark beetle ecology and management exist. However, our understanding of outbreak drivers and impacts, principles of ecosystem management, governance, and the role of climate change in the dynamics of ecological and social systems has rapidly advanced in recent years. These advances are suggesting a reconsideration of previous management strategies. Summary We synthesize the state of knowledge on drivers and impacts of bark beetle outbreaks in Europe and propose a comprehensive context-dependent framework for their management. We illustrate our ideas for two contrasting societal objectives that represent the end-members of a continuum of forest management goals: wood and biomass production and the conservation of biodiversity and natural processes. For production forests, we propose a management approach addressing economic, social, ecological, infrastructural, and legislative aspects of bark beetle disturbances. In conservation forests, where non-intervention is the default option, we elaborate under which circumstances an active intervention is necessary, and whether such an intervention is in conflict with the objective to conserve biodiversity. Our approach revises the current management response to bark beetles in Europe and promotes an interdisciplinary social-ecological approach to dealing with disturbances. 
    more » « less
  7. null (Ed.)
  8. Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances. 
    more » « less