skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Earth exploration satellite service (EESS) plays a crucial role in environmental monitoring and weather forecasting by utilizing passive sensing technologies. However, the rapid expansion of terrestrial and satellite communication networks has introduced significant interference challenges, particularly in frequency bands that overlap with or are adjacent to EESS sensors. In this work, we develop a system model that explicitly characterizes EESS interference by considering reflected signal effects and spatial interference accumulation. Based on this model, we propose an EESS-aware resource allocation (EARA) framework that jointly optimizes power allocation and user association, while ensuring that interference to EESS sensors remains within acceptable limits. A non-convex joint optimization problem is formulated and efficiently solved leveraging the Lagrangian dual transform and Dinkelbach’s method. Simulation results demonstrate that the proposed EARA scheme achieves up to 26.3% higher sum rate compared to genetic algorithm and binary whale optimization algorithm, while strictly satisfying the ITU-defined interference threshold. This work establishes a foundation for future research on the coexistence of communication networks and passive Earth observation systems, offering practical strategies for interference mitigation and spectrum sharing in next-generation networks. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. ABSTRACT Mediation analysis is widely utilized in neuroscience to investigate the role of brain image phenotypes in the neurological pathways from genetic exposures to clinical outcomes. However, it is still difficult to conduct mediation analyses with whole genome‐wide exposures and brain subcortical shape mediators due to several challenges including (i) large‐scale genetic exposures, that is, millions of single‐nucleotide polymorphisms (SNPs); (ii) nonlinear Hilbert space for shape mediators; and (iii) statistical inference on the direct and indirect effects. To tackle these challenges, this paper proposes a genome‐wide mediation analysis framework with brain subcortical shape mediators. First, to address the issue caused by the high dimensionality in genetic exposures, a fast genome‐wide association analysis is conducted to discover potential genetic variants with significant genetic effects on the clinical outcome. Second, the square‐root velocity function representations are extracted from the brain subcortical shapes, which fall in an unconstrained linear Hilbert subspace. Third, to identify the underlying causal pathways from the detected SNPs to the clinical outcome implicitly through the shape mediators, we utilize a shape mediation analysis framework consisting of a shape‐on‐scalar model and a scalar‐on‐shape model. Furthermore, the bootstrap resampling approach is adopted to investigate both global and spatial significant mediation effects. Finally, our framework is applied to the corpus callosum shape data from the Alzheimer's Disease Neuroimaging Initiative. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Artificial intelligence-assisted drug design is revolutionizing the pharmaceutical industry. Effective molecular features are crucial for accurate machine learning predictions, and advanced mathematics plays a key role in designing these features. Persistent homology theory, which equips topological invariants with persistence, provides valuable insights into molecular structures. The standard homology theory is based on a differential rule for the boundary operator that satisfies [Formula: see text] = 0. Our recent work has extended this rule by employing Mayer homology with generalized differentials that satisfy [Formula: see text] = 0 for [Formula: see text] 2, leading to the development of persistent Mayer homology (PMH) theory and richer topological information across various scales. In this study, we utilize PMH to create a novel multiscale topological vectorization for molecular representation, offering valuable tools for descriptive and predictive analyses in molecular data and machine learning prediction. Specifically, benchmark tests on established protein-ligand datasets, including PDBbind-v2007, PDBbind-v2013, and PDBbind-v2016, demonstrate the superior performance of our Mayer homology models in predicting protein-ligand binding affinities. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. Abstract ObjectiveExtracting social determinants of health (SDoHs) from medical notes depends heavily on labor-intensive annotations, which are typically task-specific, hampering reusability and limiting sharing. Here, we introduce SDoH-GPT, a novel framework leveraging few-shot learning large language models (LLMs) to automate the extraction of SDoH from unstructured text, aiming to improve both efficiency and generalizability. Materials and MethodsSDoH-GPT is a framework including the few-shot learning LLM methods to extract the SDoH from medical notes and the XGBoost classifiers which continue to classify SDoH using the annotations generated by the few-shot learning LLM methods as training datasets. The unique combination of the few-shot learning LLM methods with XGBoost utilizes the strength of LLMs as great few shot learners and the efficiency of XGBoost when the training dataset is sufficient. Therefore, SDoH-GPT can extract SDoH without relying on extensive medical annotations or costly human intervention. ResultsOur approach achieved tenfold and twentyfold reductions in time and cost, respectively, and superior consistency with human annotators measured by Cohen's kappa of up to 0.92. The innovative combination of LLM and XGBoost can ensure high accuracy and computational efficiency while consistently maintaining 0.90+ AUROC scores. DiscussionThis study has verified SDoH-GPT on three datasets and highlights the potential of leveraging LLM and XGBoost to revolutionize medical note classification, demonstrating its capability to achieve highly accurate classifications with significantly reduced time and cost. ConclusionThe key contribution of this study is the integration of LLM with XGBoost, which enables cost-effective and high quality annotations of SDoH. This research sets the stage for SDoH can be more accessible, scalable, and impactful in driving future healthcare solutions. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  5. In the past decade, topological data analysis has emerged as a powerful algebraic topology approach in data science. Although knot theory and related subjects are a focus of study in mathematics, their success in practical applications is quite limited due to the lack of localization and quantization. We address these challenges by introducing knot data analysis (KDA), a paradigm that incorporates curve segmentation and multiscale analysis into the Gauss link integral. The resulting multiscale Gauss link integral (mGLI) recovers the global topological properties of knots and links at an appropriate scale and offers a multiscale geometric topology approach to capture the local structures and connectivities in data. By integration with machine learning or deep learning, the proposed mGLI significantly outperforms other state-of-the-art methods across various benchmark problems in 13 intricately complex biological datasets, including protein flexibility analysis, protein–ligand interactions, human Ether-à-go-go-Related Gene potassium channel blockade screening, and quantitative toxicity assessment. Our KDA opens a research area—knot deep learning—in data science. 
    more » « less
  6. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease, yet its current treatments are limited to stopping disease progression. Moreover, the effectiveness of these treatments remains uncertain due to the heterogeneity of the disease. Therefore, it is essential to identify disease subtypes at a very early stage. Current data-driven approaches can be used to classify subtypes during later stages of AD or related disorders, but making predictions in the asymptomatic or prodromal stage is challenging. Furthermore, the classifications of most existing models lack explainability, and these models rely solely on a single modality for assessment, limiting the scope of their analysis. Thus, we propose a multimodal framework that utilizes early-stage indicators, including imaging, genetics, and clinical assessments, to classify AD patients into progression-specific subtypes at an early stage. In our framework, we introduce a tri-modal co-attention mechanism (Tri-COAT) to explicitly capture cross-modal feature associations. Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (slow progressing = 177, intermediate = 302, and fast = 15) were used to train and evaluate Tri-COAT using a 10-fold stratified cross-testing approach. Our proposed model outperforms baseline models and sheds light on essential associations across multimodal features supported by known biological mechanisms. The multimodal design behind Tri-COAT allows it to achieve the highest classification area under the receiver operating characteristic curve while simultaneously providing interpretability to the model predictions through the co-attention mechanism. 
    more » « less