skip to main content

Search for: All records

Creators/Authors contains: "Shen, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also be used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with themore »absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane.« less
  2. Free, publicly-accessible full text available June 13, 2023
  3. In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) alternatives. Most existing tests are powerful only against certain alternatives and may yield incorrect Type I error rates under high-dimensional nuisance parameter situations. In this paper, we propose the adaptive interaction sum of powered score (aiSPU) test in the framework of penalized regression with a non-convex penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error rates while yielding high statistical power across a wide range of alternatives. To calculate its p-values analytically, we derive its asymptotic null distribution. Via simulations, its superior finite-sample performance is demonstrated over several representative existing methods. In addition, we apply it and other representative tests to an Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for Alzheimer’s disease. We also put R package “aispu” implementing the proposed test on GitHub.
  4. The bicyclo[3.3.1]nonane architecture is a privileged structural motif found in over 1000 natural products with relevance to neurodegenerative disease, bacterial and parasitic infection, and cancer among others. Despite disparate biosynthetic machinery, alkaloid, terpene, and polyketide-producing organisms have all evolved pathways to incorporate this carbocyclic ring system. Natural products of mixed polyketide/terpenoid origins (meroterpenes) are a particularly rich and important source of biologically active bicyclo[3.3.1]nonane-containing molecules. Herein we detail a fully synthetic strategy toward this broad family of targets based on an abiotic annulation/rearrangement strategy resulting in a 10-step total synthesis of garsubellin A, an enhancer of choline acetyltransferase and member of the large family of polycyclic polyprenylated acylphloroglucinols. This work solidifies a strategy for making multiple, diverse meroterpene chemotypes in a programmable assembly process involving a minimal number of chemical transformations.
  5. This paper presents the design and preliminary testing of an instrumented exoskeleton system, which is targeted at collecting gait data of the human locomotion to support the controller development of lower-limb wearable robots. This compact and lightweight device features a unique two-degree-of-freedom joint to minimize the interference to the user movement and a simple yet effective adjustment mechanism to fit subjects at different heights. For the gait measurement, the device incorporates embedded joint goniometers to obtain the knee and ankle positions, and inertial measurement units to obtain three-dimensional kinematic information. Force-sensing resistors are also incorporated into the shoe insole for plantar pressure measurement. Sensor signals are routed to an onboard microcontroller system for data storage and transfer, and the system is fully self-contained with onboard battery to facilitate data collection in various environments. A prototype of the exoskeleton was fabricated, and preliminary testing was conducted on two healthy subjects in various postures and modes of movement (walking, sitting, standing, stair climbing, etc.). The evaluation of a temporal event detection test showed no more than 5.5% mean variation in the measure of step counts by the sensory system and video annotation. These results indicate that the exoskeleton can provide an accuratemore »measurement of gait information, using measurements taken from external video recordings as the benchmark in this preliminary validation study.« less