skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simon, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Volcano-sedimentary lithium (Li) deposits are a potential source of battery-grade Li, although the important factors controlling Li enrichment in these systems remain unclear. At Thacker Pass in Nevada, high-grade mineralization overprinted intracaldera lacustrine claystone made of authigenic Li-rich smectite with bulk grades of ~3,000 ppm Li, converting it to illitic claystone with grades of ~6,000 ppm Li. Some attribute this enrichment to burial diagenesis, whereas others propose lacustrine Li enrichment through leaching and climate-driven evapoconcentration enhanced by postdepositional hydrothermal alteration. To better understand Li enrichment in volcano-sedimentary systems, claystones from throughout Thacker Pass were analyzed using powder X-ray diffraction (PXRD), electron microprobe (EPMA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and stable isotope (clay δ18O, δ17O, and δ2H and carbonate δ13C and δ18O) methods. Compositional data suggest that illitization is required to achieve clay Li grades above ~0.9 wt % in Mg silicate clays because of a charge-coupled substitution that requires filling interlayer vacancies with K. Clay chemical trends and computational modeling exercises also suggest that F may be important in the formation of Li-rich clays by lowering kinetic barriers to clay precursor growth and illitization. The results are incompatible with diagenetic smectite/illite formation but are consistent with a model wherein authigenic smectite was subjected to hydrothermal alteration in the presence of a K-, Li-, and F-rich fluid that permeated the stratigraphy through a network of normal faults associated with caldera resurgence. These results also enhance our understanding of Li clay formation in other volcano-sedimentary systems. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract The importance of lithium for emerging industrial, aerospace, defense, and most significantly, lithium-ion battery technologies, is leading to a rapid increase in the demand for this critical resource. Although current global production of lithium is confined to historically exploited lithium-bearing pegmatites and closed-basin saline brines, new occurrences of these and several nascent types of lithium deposits are under varying stages of active exploration, development, and construction. This includes lithium resources associated with volcano-sedimentary deposits, continental and geothermal brines, and rare element granites. This paper presents an overview of lithium uses, production trends, the different types of lithium deposits, and their sizes, grades, and global distribution, as well as introducing the 24 papers in these two Special Issues of Economic Geology that review these lithium mineral systems and deposits in detail. These contributions include reviews and overviews of major deposit types, regional assessments of lithium provinces, deposit-specific research, and exploration techniques for finding additional resources. It is our hope that the scientific compilation and new insights presented in these two Special Issues of Economic Geology spur innovative thought and research in lithium deposit genesis and exploration to support the sustainable extraction of this critical element. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. This chapter discusses how radiogenic and stable isotopes can be used in the study of metallic mineral deposits. Although the chapter is mostly focused on the radiogenic (Pb, Os) and heavy stable (Fe, Cu, Zn) isotopes of metallic elements, we complement the discussion highlighting also the power of stable isotopes of light elements, which are major to significant components of hydrothermal fluids and rocks (e.g., H, B, C, N, O, S), as well as of radiogenic isotopes of elements (Sr, Nd, Hf ) that are useful in tracing fluid/magma sources and their interaction with the host rocks. In the first part of this chapter we discuss general aspects of isotopes clarifying the differences between stable non-radiogenic and stable radiogenic isotopes and, consequently, their different applicability to metallogenic studies. Due to their properties, stable non-radiogenic isotopes record mass-dependent fractionation that occur in many reactions associated with the formation of mineral deposits. Mass-dependent fractionation of stable non-radiogenic isotopes occurs both under equilibrium and non-equilibrium (kinetic) conditions of the reactions leading to ore mineral deposition and is controlled by various physico-chemical parameters, like, among the principal ones, temperature, oxygen fugacity, and biological activity. Therefore, stable non-radiogenic isotopes can inform us about the physico-chemical and, eventually, biological processes that control ore mineral deposition and also on the sources of some metals (e.g., transition metal isotopes of elements like Fe, Cu, Zn) or of the fluids (e.g., H, C, O, N, S isotopes) and even of metal ligands (e.g., S, Cl). We conclude the first part of the chapter providing some hints on the strategy of sampling and on the instrumentation related to isotopic studies. In the second part we discuss radioactive-radiogenic isotope systems and their applications in metallogenic studies of metallic mineral deposits. Stable radiogenic isotopes are characterized by relative variations that are controlled, in each geological system, by the addition of a radiogenic component of an isotope, derived from the decay of a radioactive parent, to the same radiogenic isotope already present in the Earth since its formation  4.55 Gyr ago. This relative variation is usually expressed as the ratio of a radiogenic isotope of an element to a non-radiogenic isotope of the same element. The ratio of these two isotopes has increased since the Earth formation and the magnitude of its variations depends on the radioactive/ radiogenic isotope ratios in different geological systems and on the time elapsed since the system has formed. The Earth is  4.55 Gyr old and has evolved from an initially homogeneous isotopic composition to reservoirs (e.g., mantle, crust) and crustal rocks with very variable radioactive/radiogenic isotope ratios due to magmatic, metamorphic, weathering, atmospheric and biologic processes, among others. This has resulted in extremely large variations of radiogenic isotopes in rocks and reservoirs of the Earth which can track various geological processes. In ore geology, stable radiogenic isotopes are best suited for tracing metal (e.g., Pb, Os) sources from different rocks and reservoirs (e.g., mantle, upper crust, lower crust), fluid-rock interactions (i.e., the hydrothermal plumbing system), or magma-host rock interactions (e.g., host rock assimilation by magmas associated with magmatic-hydrothermal deposits). Radioactive-radiogenic isotope systems allow us to determine also absolute ages of suitable minerals that are found in mineral deposits. This is an essential information in metallogeny that allows us to link the formation of a mineral deposit to a specific geological process and/or to specific periods of the Earth’s history. We discuss various dating methods that are extensively applied to date mineral deposits. These methods can be subdivided into those that allow a direct dating of ore minerals (e.g., RedOs dating of molybdenite, UdPb dating of cassiterite) and those that allow dating of minerals that are demonstrably related with the mineralization (e.g., UdPb dating of zircon from magmatic rocks associated with magmatic-hydrothermal deposits; Ar/Ar dating of K-bearing minerals resulting from alteration associated with various types of mineral deposits). We discuss pros and cons of using these various methods and also mention methods that are less used (because potentially less accurate and precise), but sometimes represent the only possibility to provide an age to deposit types that are notoriously difficult to date (e.g., MVT and Carlin-type deposits). We highlight the power of both stable radiogenic and non-radiogenic isotopes in unravelling the genesis of metallic mineral deposits through a series of conceptual and real examples applied to a broad range of mineral deposit types such as porphyry systems (i.e., porphyry deposits, high- and intermediate-sulfidation epithermal deposits, skarn, carbonate replacement deposits, sediment-hosted Au deposits), low-sulfidation epithermal deposits, IOCG deposits, ortho-magmatic deposits, volcanic-hosted massive sulfide deposits (VHMS), sediment-hosted deposits (stratiform copper, MVT), and supergene deposits. In the third part of the chapter, we discuss the use of transition metal stable non-radiogenic isotopes to mineral deposits. Although in its infancy, the application of transition metal isotopes to mineral deposit investigation is quickly growing because these isotopes allow us to address different aspects of the formation of mineral deposits compared to radiogenic isotopes. In particular, isotopes of transition metals (like stable isotopes of light elements) undergo mass-dependent fractionation processes that may be associated with different types of equilibrium and non-equilibrium chemical, physical and biological reactions occurring during the formation of mineral deposits. We focus on the applications of the isotopes of Cu, Fe and Zn to various deposit types, because isotopes of these transition metals are those that have been most extensively used in mineral deposit studies. Mass-independent fractionation may also occur for isotopes of some elements and could be a developing field that has not yet been extensively explored in the study of mineral deposits. 
    more » « less
  4. Critical minerals are essential for sustaining the supply chain necessary for the transition to a carbon-free energy source for society. Copper, nickel, cobalt, lithium, and rare earth elements are particularly in demand for batteries and high-performance magnets used in low-carbon technologies. Copper, predominantly sourced from porphyry deposits, is critical for electricity generation, storage, and distribution. Nickel, which comes from laterite and magmatic sulfide deposits, and cobalt, often a by-product of nickel or copper mining, are core components of batteries that power electric vehicles. Lithium, sourced from pegmatite deposits and continental brines, is another key battery component. Rare earth elements, primarily obtained from carbonatite- and regolith-hosted ion-adsorption deposits, have unique magnetic properties that are key for motor efficiency. Future demand for these elements is expected to increase significantly over the next decades, potentially outpacing expected mine production. Therefore, to ensure a successful energy transition, efforts must prioritize addressing substantial challenges in the supply of critical minerals, particularly the delays in exploring and mining new resources to meet growing demands.▪The energy transition relies on green technologies needing a secure, sustainable supply of critical minerals sourced from ore deposits worldwide.▪Copper, nickel, cobalt, lithium, and rare earth elements are geologically restricted in occurrence, posing challenges for extraction and availability.▪Future demand is expected to surge in the next decades, requiring unprecedented production rates to make the green energy transition viable. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026
  5. Hummer, Daniel (Ed.)
    Abstract Minerals are the fundamental constituents of Earth, and mineral names appear in scientific literature for disciplines including geology, chemistry, materials science, biology, and medicine, among others. Choosing a name is the full responsibility of the authors of new mineral proposals submitted to the International Mineralogical Association (IMA). Scientific nomenclature and its traditions have evolved over time, and consequently, mineral names track changes in the landscape of mineralogy with respect to language, technology, and culture. To evaluate these changes, the namesake information for all 5896 minerals approved by the IMA or “grandfathered” into use as of December 2022 was recorded and categorized within a workable database. The compiled information yields diverse insights into the intersection of science and culture and could also be used to project future trends. In this study, we used the name database to investigate gender diversity among mineral eponyms. More than half (ca. 54%) of all mineral species are named after people, the identities of whom are largely a reflection of the people that have historically been involved, in one way or another, in the geosciences and the mining industry. Of the 2738 people with minerals named for them, ∼6.1% are (interpreted to be) women. Nearly all minerals named for women were named during the last 60 years, although the growth rate in the year-on-year percentage of women among new mineral namesakes has slowed since about 1985. If current and historical trends hold, our model predicts that women will not comprise more than about 10.35% of newly established mineral namesakes in future years. The representation of women among mineral namesakes also differs starkly among countries. For example, Russians comprise 43.11% of women with minerals named for them but account for only 15.12% of all eponyms. However, there are additional disparities beyond the proportions of namesakes. For scientists who were alive when a mineral was named for them, women averaged 3.74 years older than men when evaluated over the same timespan (1954–2022). These results demonstrate that gender-based disparities are imprinted into current mineral nomenclature and indicate that gender parity among new mineral namesakes is impossible without unprecedented changes in the upstream demographics that are most likely to affect naming trends. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  6. Iron oxide-apatite (IOA) deposits, also known as magnetite-apatite or Kiruna-type deposits, are a major source of iron and potentially of rare earth elements and phosphorus. To date, the youngest representative of this group is the Pleistocene (~2 Ma) El Laco deposit, located in the Andean Cordillera of northern Chile. El Laco is considered a unique type of IOA deposit because of its young age and its volcanic-like features. Here we report the occurrence of similarly young IOA-type mineralization hosted within the Laguna del Maule Volcanic Complex, an unusually large and recent silicic volcanic system in the south-central Andes. We combined field observations and aerial drone images with detailed petrographic observations, electron microprobe analysis (EMPA), and 40Ar/39Ar dating to characterize the magnetite mineralization—named here “Vetas del Maule”—hosted within andesites of the now extinct La Zorra volcano (40Ar/39Ar plateau age of 1.013 ± 0.028 Ma). Five different styles of magnetite mineralization were identified: (1) massive magnetite, (2) pyroxene-actinolite-magnetite veins, (3) magnetite hydrothermal breccias, (4) disseminated magnetite, and (5) pyroxene-actinolite veins with minor magnetite. Field observations and aerial drone imaging, coupled with microtextural and microanalytical data, suggest a predominantly hydrothermal origin for the different types of mineralization. 40Ar/39Ar incremental heating of phlogopite associated with the magnetite mineralization yielded a plateau age of 873.6 ± 30.3 ka, confirming that the emplacement of Vetas del Maule postdated that of the host andesite rocks. Our data support the hypothesis that the magnetite mineralization formed in a volcanic setting from Fe-rich fluids exsolved from a magma at depth. Ultimately, Vetas del Maule provides evidence that volcanic-related IOA mineralization may be more common than previously thought, opening new opportunities of research and exploration for this ore deposit type in active volcanic arcs. 
    more » « less
  7. Porphyry Cu ± Mo ± Au and iron oxide-apatite (IOA) deposits rarely occur in spatial and temporal proximity in Phanerozoic arc-related settings, and the formation of these mineral deposit types in an evolving arc setting remains poorly understood. Specifically, the roles of magma composition and the tectonic regime remain the subject of some debate. Here, we systematically estimated the P-T-fO2 conditions and H2O-S-Cl contents for dioritic to granodioritic source magmas for porphyry and skarn Cu ± Au (150–135 Ma) and IOA deposits (~130 Ma) that formed in transpressional and transtensional settings in the Middle-Lower Yangtze River metallogenic belt, China. Our estimates show that, compared to IOA deposits, the porphyry- and skarn-related magmas were relatively felsic, cooler, and more hydrous. These geochemical features are consistent with the tectonic transition from subduction to slab rollback of the paleo-Pacific plate in the East Asia continental margin at <135 Ma and concomitant crustal extension and steepening of the regional geothermal gradient. Apatite data reveal that the silicate melts associated with the porphyry and skarn Cu ± Au and IOA deposits had comparable predegassed S concentrations (~0.13 ± 0.06 wt % vs. ~0.16 ± 0.09 wt % on average), but that IOA-related melts contained higher predegassed Cl/H2O ratios (~0.11 ± 0.03 vs. ~0.04 ± 0.03 for porphyry- and skarn-related magmas) that decreased by one order of magnitude after magmatic degassing. Magmatic fO2 estimated using zircon and amphibole, reported in log units relative to the fayalite-magnetite-quartz (FMQ) redox buffer, gradually increased during cooling of the porphyry- and skarn-related magmas (ΔFMQ +0.7 to +2.5) at 950° to 800°C and decreased to ΔFMQ +1 at 700°C owing to fractionation of Fe2+-rich minerals and subsequent S degassing, respectively. In contrast, the magmatic fO2 values for the IOA-related source magmas varied significantly from ΔFMQ –1.5 to ΔFMQ +2.5 but generally show an increasing trend with cooling from 970° to 700°C that probably resulted from variable degrees of evaporite assimilation, fractionation of Fe2+-rich minerals, and Cl degassing. These results are consistent with the hypothesis that Cl enrichment of the IOA-related source magmas played a determinant role in their formation. We propose that the porphyry and skarn Cu ± Au deposits in the Middle-Lower Yangtze River metallogenic belt formed in a transpressional setting in response to paleo-Pacific flat-slab subduction that favored storage and evolution of S-rich hydrous ore-forming magmas at variable crustal levels. A subsequent extensional setting formed due to slab rollback, leading to rapid degassing of Cl-rich IOA-related magmas. For the latter scenario, assimilation of evaporite by mafic to intermediate magmas would lead to an enrichment of Cl in the predegassed magmas and subsequent exsolution of hypersaline magmatic-hydrothermal fluid enriched in Fe as FeCl2. This Fe-rich ore fluid efficiently transported Fe to the apical parts of the magma bodies and overlying extensional normal faults where IOA mineralization was localized. The concomitant loss of S, H2O, and Cu with Cl by volcanic outgassing may have inhibited sulfide mineralization at lower temperatures. 
    more » « less
  8. Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S6+) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle. Our model predicts that as much as 1 wt.% of the total dissolved sulfur in slab-derived fluids reacting with mantle rocks is present as the trisulfur radical ion, S3. This sulfur ligand stabilizes the aqueous Au(HS)S3complex, which can transport Au concentrations of several grams per cubic meter of fluid. Such concentrations are more than three orders of magnitude higher than the average abundance of Au in the mantle. Our data thus demonstrate that an aqueous fluid phase can extract 10 to 100 times more Au than in a fluid-absent rock-melt system during mantle partial melting at redox conditions close to the sulfide-sulfate boundary. We conclude that oxidation by slab-derived fluids is the primary cause of Au mobility and enrichment in the mantle wedge and that aqueous fluid-assisted mantle melting is a prerequisite for formation of Au-rich magmatic hydrothermal and orogenic gold systems in subduction zone settings. 
    more » « less
  9. The Coastal Ocean Environment Summer School In Nigeria and Ghana (COESSING; https://coessing.org) has been run for one week every year since 2015. The school, an endorsed project of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030), has provided a platform for approximately 1,000 scientists from Africa, the United States, and Europe to exchange scientific knowledge, to network, to learn, and to collaborate. Our interdisciplinary, multicultural, and multi-institutional approach offers a model for knowledge exchange across the globe and across different educational levels. 
    more » « less
  10. Abstract The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X-ray absorption near-edge structure spectroscopy (S-XANES) where S 6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms. One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, the energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel. The thermodynamics of incorporation of disulfide and bisulfide into apatite is evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S is also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS(aq)(2−n) and HnS(aq)(2−n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite, and decreases for hydroxylapatite, as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures. 
    more » « less