Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While p-type BiCuSeO is a well-known mid-temperature oxide thermoelectric (TE) material, computations predict that superior TE performance can be realized through n-type doping. In this study, we use first-principles defect calculations to show that Cu vacancies are responsible for the native p-type self doping; yet, we find that BiCuSeO is n-type dopable under Cu-rich growth conditions, where the formation of Cu vacancies is suppressed. We computationally survey a broad suite of 23 dopants and find that only Cl and Br are effective n-type dopants. Therefore, we recommend that future experimental doping efforts utilize phase boundary mapping to optimize the electron concentration and resolve the anomalous p–n–p transitions observed in halogen-doped BiCuSeO. The prospect of n-type doping, as revealed by our defect calculations, paves the path for rational design of BiCuSeO chemical analogues with similar doping behavior and even better TE performance.more » « less
-
The ability of thermoelectric (TE) materials to convert thermal energy to electricity and vice versa highlights them as a promising candidate for sustainable energy applications. Despite considerable increases in the figure of merit zT of thermoelectric materials in the past two decades, there is still a prominent need to develop scalable synthesis and flexible manufacturing processes to convert high-efficiency materials into high-performance devices. Scalable printing techniques provide a versatile solution to not only fabricate both inorganic and organic TE materials with fine control over the compositions and microstructures, but also manufacture thermoelectric devices with optimized geometric and structural designs that lead to improved efficiency and system-level performances. In this review, we aim to provide a comprehensive framework of printing thermoelectric materials and devices by including recent breakthroughs and relevant discussions on TE materials chemistry, ink formulation, flexible or conformable device design, and processing strategies, with an emphasis on additive manufacturing techniques. In addition, we review recent innovations in the flexible, conformal, and stretchable device architectures and highlight state-of-the-art applications of these TE devices in energy harvesting and thermal management. Perspectives of emerging research opportunities and future directions are also discussed. While this review centers on thermoelectrics, the fundamental ink chemistry and printing processes possess the potential for applications to a broad range of energy, thermal and electronic devices.more » « less
-
Valley degeneracy is a key feature of the electronic structure that benefits the thermoelectric performance of a material. Despite recent studies which claim that high valley degeneracy can be achieved with inverted bands, our analysis of rock-salt IV–VI compounds using first-principles calculations and k · p perturbation theory demonstrates that mere band inversion is an insufficient condition for high valley degeneracy; rather, there is a critical degree to which the bands must be inverted to induce multiple carrier pockets. The so-called “band inversion parameter” is formalized as a chemically-tunable property, offering a design route to achieving high valley degeneracy in compounds with inverted bands. We predict that the valley degeneracy of rock-salt IV–VI compounds can be increased from N V = 4 to N V = 24, which could result in a corresponding increase in the thermoelectric figure of merit zT .more » « less
-
Solid-solution alloy scattering of phonons is a demonstrated mechanism to reduce the lattice thermal conductivity. The analytical model of Klemens works well both as a predictive tool for engineering materials, particularly in the field of thermoelectrics, and as a benchmark for the rapidly advancing theory of thermal transport in complex and defective materials. This comment/review outlines the simple algorithm used to predict the thermal conductivity reduction due to alloy scattering, as to avoid common misinterpretations, which have led to a large overestimation of mass fluctuation scattering. The Klemens model for vacancy scattering predicts a nearly 10× larger scattering parameter than is typically assumed, yet this large effect has often gone undetected due to a cancellation of errors. The Klemens description is generalizable for use in ab initio calculations on complex materials with imperfections. The closeness of the analytic approximation to both experiment and theory reveals the simple phenomena that emerges from the complexity and unexplored opportunities to reduce thermal conductivity.more » « less
-
Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bi 2 system.more » « less
-
The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe 2 Al can be explained by considering VFe 2 Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap ( E g = 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe 2 Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe 2 Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small E g semiconductor understanding, the model suggests that nominally undoped VFe 2 Al samples appear metallic because of intrinsic defects of the order of ∼10 20 defects per cm −3 . We rationalize the observed trends in weighted mobilities ( μ w ) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the zT versus carrier concentration curve for this material, which maps well to reported experimental investigations.more » « less