skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Song, Eunhye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the nested simulation literature, a common assumption is that the experimenter can choose the number of outer scenarios to sample. This paper considers the case when the experimenter is given a fixed set of outer scenarios from an external entity. We propose a nested simulation experiment design that pools inner replications from one scenario to estimate another scenario’s conditional mean via the likelihood ratio method. Given the outer scenarios, we decide how many inner replications to run at each outer scenario as well as how to pool the inner replications by solving a bilevel optimization problem that minimizes the total simulation effort. We provide asymptotic analyses on the convergence rates of the performance measure estimators computed from the optimized experiment design. Under some assumptions, the optimized design achieves [Formula: see text] mean squared error of the estimators given simulation budget [Formula: see text]. Numerical experiments demonstrate that our design outperforms a state-of-the-art design that pools replications via regression. History: Accepted by Bruno Tuffin, Area Editor for Simulation. Funding: This work was supported by the National Science Foundation [Grant CMMI-2045400] and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2018-03755]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0392 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0392 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  2. This article considers a discrete optimization via simulation (DOvS) problem defined on a graph embedded in the high-dimensional integer grid. Several DOvS algorithms that model the responses at the solutions as a realization of a Gaussian Markov random field (GMRF) have been proposed exploiting its inferential power and computational benefits. However, the computational cost of inference increases exponentially in dimension. We propose the projected Gaussian Markov improvement algorithm (pGMIA), which projects the solution space onto a lower-dimensional space creating the region-layer graph to reduce the cost of inference. Each node on the region-layer graph can be mapped to a set of solutions projected to the node; these solutions form a lower-dimensional solution-layer graph. We define the response at each region-layer node to be the average of the responses within the corresponding solution-layer graph. From this relation, we derive the region-layer GMRF to model the region-layer responses. The pGMIA alternates between the two layers to make a sampling decision at each iteration. It first selects a region-layer node based on the lower-resolution inference provided by the region-layer GMRF, then makes a sampling decision among the solutions within the solution-layer graph of the node based on the higher-resolution inference from the solution-layer GMRF. To solve even higher-dimensional problems (e.g., 100 dimensions), we also propose the pGMIA+: a multi-layer extension of the pGMIA. We show that both pGMIA and pGMIA+ converge to the optimum almost surely asymptotically and empirically demonstrate their competitiveness against state-of-the-art high-dimensional Bayesian optimization algorithms. 
    more » « less
  3. We consider a continuous-valued simulation optimization (SO) problem, where a simulator is built to optimize an expected performance measure of a real-world system while parameters of the simulator are estimated from streaming data collected periodically from the system. At each period, a new batch of data is combined with the cumulative data and the parameters are re-estimated with higher precision. The system requires the decision variable to be selected in all periods. Therefore, it is sensible for the decision-maker to update the decision variable at each period by solving a more precise SO problem with the updated parameter estimate to reduce the performance loss with respect to the target system. We define this decision-making process as the multi-period SO problem and introduce a multi-period stochastic approximation (SA) framework that generates a sequence of solutions. Two algorithms are proposed: Re-start SA (ReSA) reinitializes the stepsize sequence in each period, whereas Warm-start SA (WaSA) carefully tunes the stepsizes, taking both fewer and shorter gradient-descent steps in later periods as parameter estimates become increasingly more precise. We show that under suitable strong convexity and regularity conditions,ReSAandWaSAachieve the best possible convergence rate in expected sub-optimality either when an unbiased or a simultaneous perturbation gradient estimator is employed, whileWaSAaccrues significantly lower computational cost as the number of periods increases. In addition, we present theregularizedReSA, which obviates the need to know the strong convexity constant and achieves the same convergence rate at the expense of additional computation. 
    more » « less
  4. Discrete-event simulation models generate random variates from input distributions and compute outputs according to the simulation logic. The input distributions are typically fitted to finite real-world data and thus are subject to estimation errors that can propagate to the simulation outputs: an issue commonly known as input uncertainty (IU). This paper investigates quantifying IU using the output confidence intervals (CIs) computed from bootstrap quantile estimators. The standard direct bootstrap method has overcoverage due to convolution of the simulation error and IU; however, the brute-force way of washing away the former is computationally demanding. We present two new bootstrap methods to enhance direct resampling in both statistical and computational efficiencies using shrinkage strategies to down-scale the variabilities encapsulated in the CIs. Our asymptotic analysis shows how both approaches produce tight CIs accounting for IU under limited input data and simulation effort along with the simulation sample-size requirements relative to the input data size. We demonstrate performances of the shrinkage strategies with several numerical experiments and investigate the conditions under which each method performs well. We also show advantages of nonparametric approaches over parametric bootstrap when the distribution family is misspecified and over metamodel approaches when the dimension of the distribution parameters is high. History: Accepted by Bruno Tuffin, Area Editor for Simulation. Funding: This work was supported by the National Science Foundation [CAREER CMMI-1834710, CAREER CMMI-2045400, DMS-1854659, and IIS-1849280]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0044 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0044 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  5. Feng, B.; Pedrielli, G; Peng, Y.; Shashaani, S.; Song, E.; Corlu, C.; Lee, L.; Chew, E.; Roeder, T.; Lendermann, P. (Ed.)
    The Rapid Gaussian Markov Improvement Algorithm (rGMIA) solves discrete optimization via simulation problems by using a Gaussian Markov random field and complete expected improvement as the sampling and stopping criterion. rGMIA has been created as a sequential sampling procedure run on a single processor. In this paper, we extend rGMIA to a parallel computing environment when q+1 solutions can be simulated in parallel. To this end, we introduce the q-point complete expected improvement criterion to determine a batch of q+1 solutions to simulate. This new criterion is implemented in a new object-oriented rGMIA package. 
    more » « less
  6. Abstract When maintenance resources in a manufacturing system are limited, a challenge arises in determining how to allocate these resources among multiple competing maintenance jobs. This work formulates an online prioritization problem to tackle this challenge using a Markov decision process (MDP) to model the system behavior and Monte Carlo tree search (MCTS) to seek optimal maintenance actions in various states of the system. Further, case-based reasoning (CBR) is adopted to retain and reuse search experience gathered from MCTS to reduce the computational effort needed over time and to improve decision-making efficiency. The proposed method results in increased system throughput when compared to existing methods of maintenance prioritization while also reducing the computation time needed to identify optimal maintenance actions as more information is gathered. This is especially beneficial in manufacturing settings where maintenance decisions must be made quickly to minimize the negative performance impact of machine downtime. 
    more » « less