Inference-based optimization via simulation, which substitutes Gaussian process (GP) learning for the structural properties exploited in mathematical programming, is a powerful paradigm that has been shown to be remarkably effective in problems of modest feasible-region size and decision-variable dimension. The limitation to “modest” problems is a result of the computational overhead and numerical challenges encountered in computing the GP conditional (posterior) distribution on each iteration. In this paper, we substantially expand the size of discrete-decision-variable optimization-via-simulation problems that can be attacked in this way by exploiting a particular GP—discrete Gaussian Markov random fields—and carefully tailored computational methods. The result is the rapid Gaussian Markov Improvement Algorithm (rGMIA), an algorithm that delivers both a global convergence guarantee and finite-sample optimality-gap inference for significantly larger problems. Between infrequent evaluations of the global conditional distribution, rGMIA applies the full power of GP learning to rapidly search smaller sets of promising feasible solutions that need not be spatially close. We carefully document the computational savings via complexity analysis and an extensive empirical study. Summary of Contribution: The broad topic of the paper is optimization via simulation, which means optimizing some performance measure of a system that may only be estimated by executing a stochastic, discrete-event simulation. Stochastic simulation is a core topic and method of operations research. The focus of this paper is on significantly speeding-up the computations underlying an existing method that is based on Gaussian process learning, where the underlying Gaussian process is a discrete Gaussian Markov Random Field. This speed-up is accomplished by employing smart computational linear algebra, state-of-the-art algorithms, and a careful divide-and-conquer evaluation strategy. Problems of significantly greater size than any other existing algorithm with similar guarantees can solve are solved as illustrations.
more »
« less
Projected Gaussian Markov Improvement Algorithm for High-Dimensional Discrete Optimization via Simulation
This article considers a discrete optimization via simulation (DOvS) problem defined on a graph embedded in the high-dimensional integer grid. Several DOvS algorithms that model the responses at the solutions as a realization of a Gaussian Markov random field (GMRF) have been proposed exploiting its inferential power and computational benefits. However, the computational cost of inference increases exponentially in dimension. We propose the projected Gaussian Markov improvement algorithm (pGMIA), which projects the solution space onto a lower-dimensional space creating the region-layer graph to reduce the cost of inference. Each node on the region-layer graph can be mapped to a set of solutions projected to the node; these solutions form a lower-dimensional solution-layer graph. We define the response at each region-layer node to be the average of the responses within the corresponding solution-layer graph. From this relation, we derive the region-layer GMRF to model the region-layer responses. The pGMIA alternates between the two layers to make a sampling decision at each iteration. It first selects a region-layer node based on the lower-resolution inference provided by the region-layer GMRF, then makes a sampling decision among the solutions within the solution-layer graph of the node based on the higher-resolution inference from the solution-layer GMRF. To solve even higher-dimensional problems (e.g., 100 dimensions), we also propose the pGMIA+: a multi-layer extension of the pGMIA. We show that both pGMIA and pGMIA+ converge to the optimum almost surely asymptotically and empirically demonstrate their competitiveness against state-of-the-art high-dimensional Bayesian optimization algorithms.
more »
« less
- Award ID(s):
- 2246281
- PAR ID:
- 10525440
- Publisher / Repository:
- ACM TOMACS
- Date Published:
- Journal Name:
- ACM Transactions on Modeling and Computer Simulation
- Volume:
- 34
- Issue:
- 3
- ISSN:
- 1049-3301
- Page Range / eLocation ID:
- 1 to 29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Markov chain Monte Carlo (MCMC) is an established approach for uncertainty quantification and propagation in scientific applications. A key challenge in apply- ing MCMC to scientific domains is computation: the target density of interest is often a function of expensive computations, such as a high-fidelity physical simulation, an intractable integral, or a slowly-converging iterative algorithm. Thus, using an MCMC algorithms with an expensive target density becomes impractical, as these expensive computations need to be evaluated at each iteration of the algorithm. In practice, these computations often approximated via a cheaper, low- fidelity computation, leading to bias in the resulting target density. Multi-fidelity MCMC algorithms combine models of varying fidelities in order to obtain an ap- proximate target density with lower computational cost. In this paper, we describe a class of asymptotically exact multi-fidelity MCMC algorithms for the setting where a sequence of models of increasing fidelity can be computed that approximates the expensive target density of interest. We take a pseudo-marginal MCMC approach for multi-fidelity inference that utilizes a cheaper, randomized-fidelity unbiased estimator of the target fidelity constructed via random truncation of a telescoping series of the low-fidelity sequence of models. Finally, we discuss and evaluate the proposed multi-fidelity MCMC approach on several applications, including log-Gaussian Cox process modeling, Bayesian ODE system identification, PDE-constrained optimization, and Gaussian process parameter inference.more » « less
-
Bae, K-H; Feng, B; Kim, S; Lazarova-Molnar, S; Zheng, Z; Roeder, T; Thiesing, R (Ed.)This paper studies computational improvement of the Gaussian Markov improvement algorithm (GMIA) whose underlying response surface model is a Gaussian Markov random field (GMRF). GMIA’s computational bottleneck lies in the sampling decision, which requires factorizing and inverting a sparse, but large precision matrix of the GMRF at every iteration. We propose smart GMIA (sGMIA) that performs expensive linear algebraic operations intermittently, while recursively updating the vectors and matrices necessary to make sampling decisions for several iterations in between. The latter iterations are much cheaper than the former at the beginning, but their costs increase as the recursion continues and ultimately surpass the cost of the former. sGMIA adaptively decides how long to continue the recursion by minimizing the average per-iteration cost. We perform a floating-point operation analysis to demonstrate the computational benefit of sGMIA. Experiment results show that sGMIA enjoys computational efficiency while achieving the same search effectiveness as GMIA.more » « less
-
Belkin, M.; Kpotufe, S. (Ed.)Langevin algorithms are gradient descent methods with additive noise. They have been used for decades in Markov Chain Monte Carlo (MCMC) sampling, optimization, and learning. Their convergence properties for unconstrained non-convex optimization and learning problems have been studied widely in the last few years. Other work has examined projected Langevin algorithms for sampling from log-concave distributions restricted to convex compact sets. For learning and optimization, log-concave distributions correspond to convex losses. In this paper, we analyze the case of non-convex losses with compact convex constraint sets and IID external data variables. We term the resulting method the projected stochastic gradient Langevin algorithm (PSGLA). We show the algorithm achieves a deviation of 𝑂(𝑇−1/4(𝑙𝑜𝑔𝑇)1/2) from its target distribution in 1-Wasserstein distance. For optimization and learning, we show that the algorithm achieves 𝜖-suboptimal solutions, on average, provided that it is run for a time that is polynomial in 𝜖 and slightly super-exponential in the problem dimension.more » « less
-
Fast inference of numerical model parameters from data is an important prerequisite to generate predictive models for a wide range of applications. Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive. New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space, and rely on gradient-based optimization instead of sampling, providing a more efficient approach for Bayesian inference about the model parameters. Moreover, the cost of frequently evaluating an expensive likelihood can be mitigated by replacing the true model with an offline trained surrogate model, such as neural networks. However, this approach might generate significant bias when the surrogate is insufficiently accurate around the posterior modes. To reduce the computational cost without sacrificing inferential accuracy, we propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and surrogate model parameters. We also propose an efficient sample weighting scheme for surrogate model training that preserves global accuracy while effectively capturing high posterior density regions. We demonstrate the inferential and computational superiority of NoFAS against various benchmarks, including cases where the underlying model lacks identifiability. The source code and numerical experiments used for this study are available at https://github.com/cedricwangyu/NoFAS.more » « less