skip to main content

Search for: All records

Creators/Authors contains: "Song, Siyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Variable stiffness robots may provide an effective way of trading-off between safety and speed during physical human–robot interaction. In such a compromise, the impact force reduction capability and maximum safe speed are two key performance measures. To quantitatively study how dynamic parameters such as mass, inertia, and stiffness affect these two performance measures, performance indices for impact force reduction capability and maximum speed of variable stiffness robots are proposed based on the impact ellipsoid in this paper. The proposed performance indices consider different impact directions and kinematic configurations in the large. Combining the two performance indices, the global performance of variable stiffness robots is defined. A two-step optimization method is designed to achieve this global performance. A two-link variable stiffness link robot example is provided to show the efficacy of the proposed method.
  2. Abstract In this paper, we study the effects of mechanical compliance on safety in physical human–robot interaction (pHRI). More specifically, we compare the effect of joint compliance and link compliance on the impact force assuming a contact occurred between a robot and a human head. We first establish pHRI system models that are composed of robot dynamics, an impact contact model, and head dynamics. These models are validated by Simscape simulation. By comparing impact results with a robotic arm made of a compliant link (CL) and compliant joint (CJ), we conclude that the CL design produces a smaller maximum impact force given the same lateral stiffness as well as other physical and geometric parameters. Furthermore, we compare the variable stiffness joint (VSJ) with the variable stiffness link (VSL) for various actuation parameters and design parameters. While decreasing stiffness of CJs cannot effectively reduce the maximum impact force, CL design is more effective in reducing impact force by varying the link stiffness. We conclude that the CL design potentially outperforms the CJ design in addressing safety in pHRI and can be used as a promising alternative solution to address the safety constraints in pHRI.