skip to main content

Search for: All records

Creators/Authors contains: "Straneo, Fiammetta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Greenland’s coastal margins are influenced by the confluence of Arctic and Atlantic waters, sea ice, icebergs, and meltwater from the ice sheet. Hundreds of spectacular glacial fjords cut through the coastline and support thriving marine ecosystems and, in some places, adjacent Greenlandic communities. Rising air and ocean temperatures, as well as glacier and sea-ice retreat, are impacting the conditions that support these systems. Projecting how these regions and their communities will evolve requires understanding both the large-scale climate variability and the regional-scale web of physical, biological, and social interactions. Here, we describe pan-Greenland physical, biological, and social settings and show how they are shaped by the ocean, the atmosphere, and the ice sheet. Next, we focus on two communities, Qaanaaq in Northwest Greenland, exposed to Arctic variability, and Ammassalik in Southeast Greenland, exposed to Atlantic variability. We show that while their climates today are similar to those of the warm 1930s­–1940s, temperatures are projected to soon exceed those of the last 100 years at both locations. Existing biological records, including fisheries, provide some insight on ecosystem variability, but they are too short to discern robust patterns. To determine how these systems will evolve in the future requires an improved understandingmore »of the linkages and external factors shaping the ecosystem and community response. This interdisciplinary study exemplifies a first step in a systems approach to investigating the evolution of Greenland’s coastal margins.« less
    Free, publicly-accessible full text available January 1, 2023
  2. null (Ed.)
    Abstract The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 mid-depth intensified cyclones were identified that passed the array near the 2000 m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm/s, and a core propagation velocity of 27 cm/s. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m thick lens of dense water at the bottom of the water column, and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey eastmore »of Cape Farewell, conducted in summer 2020, captured two of these features which shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.« less
  3. Abstract The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 10 6 m 3 s −1 ), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some ofmore »the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.« less
  4. Abstract. Climate model projections have previously been used to compute ice shelf basal melt rates in ice sheet models, but the strategies employed – e.g., ocean input, parameterization, calibration technique, and corrections – have varied widely and are often ad hoc. Here, a methodology is proposed for the calculation of circum-Antarctic basal melt rates for floating ice, based on climate models, that is suitable for ISMIP6, the Ice Sheet Model Intercomparison Project for CMIP6 (6th Coupled Model Intercomparison Project). The past and future evolution of ocean temperature and salinity is derived from a climate model by estimating anomalies with respect to the modern day, which are added to a present-day climatology constructed from existing observational datasets. Temperature and salinity are extrapolated to any position potentially occupied by a simulated ice shelf. A simple formulation is proposed for a basal melt parameterization in ISMIP6, constrained by the observed temperature climatology, with a quadratic dependency on either the nonlocal or local thermal forcing. Two calibration methods are proposed: (1) based on the mean Antarctic melt rate (MeanAnt) and (2) based on melt rates near Pine Island's deep grounding line (PIGL). Future Antarctic mean melt rates are an order of magnitude greater in PIGL thanmore »in MeanAnt. The PIGL calibration and the local parameterization result in more realistic melt rates near grounding lines. PIGL is also more consistent with observations of interannual melt rate variability underneath Pine Island and Dotson ice shelves. This work stresses the need for more physics and less calibration in the parameterizations and for more observations of hydrographic properties and melt rates at interannual and decadal timescales.« less
  5. Abstract. The ice sheet model intercomparison project for CMIP6 (ISMIP6) effort brings together the ice sheet and climate modeling communities to gain understanding of the ice sheet contribution to sea level rise. ISMIP6 conducts stand-alone ice sheet experiments that use space- and time-varying forcing derived from atmosphere–ocean coupled global climate models (AOGCMs) to reflect plausible trajectories for climate projections. The goal of this study is to recommend a subset of CMIP5 AOGCMs (three core and three targeted) to produce forcing for ISMIP6 stand-alone ice sheet simulations, based on (i) their representation of current climate near Antarctica and Greenland relative to observations and (ii) their ability to sample a diversity of projected atmosphere and ocean changes over the 21st century. The selection is performed separately for Greenland and Antarctica. Model evaluation over the historical period focuses on variables used to generate ice sheet forcing. For stage (i), we combine metrics of atmosphere and surface ocean state (annual- and seasonal-mean variables over large spatial domains) with metrics of time-mean subsurface ocean temperature biases averaged over sectors of the continental shelf. For stage (ii), we maximize the diversity of climate projections among the best-performing models. Model selection is also constrained by technical limitations, such asmore »availability of required data from RCP2.6 and RCP8.5 projections. The selected top three CMIP5 climate models are CCSM4, MIROC-ESM-CHEM, and NorESM1-M for Antarctica and HadGEM2-ES, MIROC5, and NorESM1-M for Greenland. This model selection was designed specifically for ISMIP6 but can be adapted for other applications.« less
  6. Abstract. Projection of the contribution of ice sheets to sea level change as part ofthe Coupled Model Intercomparison Project Phase 6 (CMIP6) takes the formof simulations from coupled ice sheet–climate models and stand-alone icesheet models, overseen by the Ice Sheet Model Intercomparison Project forCMIP6 (ISMIP6). This paper describes the experimental setup forprocess-based sea level change projections to be performed with stand-aloneGreenland and Antarctic ice sheet models in the context of ISMIP6. TheISMIP6 protocol relies on a suite of polar atmospheric and oceanicCMIP-based forcing for ice sheet models, in order to explore the uncertaintyin projected sea level change due to future emissions scenarios, CMIPmodels, ice sheet models, and parameterizations for ice–ocean interactions.We describe here the approach taken for defining the suite of ISMIP6stand-alone ice sheet simulations, document the experimental framework andimplementation, and present an overview of the ISMIP6 forcing to beused by participating ice sheet modeling groups.
  7. Abstract. Human-induced atmospheric composition changes cause a radiative imbalance atthe top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain ofthe Earth system – and particularly how much and where the heat isdistributed – is fundamental to understanding how this affects warmingocean, atmosphere and land; rising surface temperature; sea level; and lossof grounded and floating ice, which are fundamental concerns for society.This study is a Global Climate Observing System (GCOS) concertedinternational effort to update the Earth heat inventory and presents anupdated assessment of ocean warming estimates as well as new and updated estimatesof heat gain in the atmosphere, cryosphere and land over the period1960–2018. The study obtains a consistent long-term Earth system heat gainover the period 1971–2018, with a total heat gain of 358±37 ZJ,which is equivalent to a global heating rate of 0.47±0.1 W m−2.Over the period 1971–2018 (2010–2018), the majority of heat gain is reportedfor the global ocean with 89 % (90 %), with 52 % for both periods inthe upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amountsmore »to 6 %(5 %) over these periods, 4 % (3 %) is available for the melting ofgrounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Ourresults also show that EEI is not only continuing, but also increasing: the EEIamounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization ofclimate, the goal of the universally agreed United Nations Framework Convention on ClimateChange (UNFCCC) in 1992 and the ParisAgreement in 2015, requires that EEI be reduced to approximately zero toachieve Earth's system quasi-equilibrium. The amount of CO2 in theatmosphere would need to be reduced from 410 to 353 ppm to increase heatradiation to space by 0.87 W m−2, bringing Earth back towards energybalance. This simple number, EEI, is the most fundamental metric that thescientific community and public must be aware of as the measure of how wellthe world is doing in the task of bringing climate change under control, andwe call for an implementation of the EEI into the global stocktake based onbest available science. Continued quantification and reduced uncertaintiesin the Earth heat inventory can be best achieved through the maintenance ofthe current global climate observing system, its extension into areas ofgaps in the sampling, and the establishment of an international framework forconcerted multidisciplinary research of the Earth heat inventory aspresented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ,, last access: 7 August 2020) under the DOI Schuckmann et al., 2020).« less
  8. Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution inresponse to different climate scenarios and assess the mass loss that would contribute tofuture sea level rise. However, there is currently no consensus on estimates of the future massbalance of the ice sheet, primarily because of differences in the representation of physicalprocesses, forcings employed and initial states of ice sheet models. This study presentsresults from ice flow model simulations from 13 international groups focusing on the evolutionof the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet ModelIntercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from theCoupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climatemodel results. Simulations of the Antarctic ice sheet contribution to sea level rise in responseto increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent(SLE) under Representative ConcentrationPathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment withconstant climate conditions and should therefore be added to the mass loss contribution underclimate conditions similar to present-day conditions over the same period. The simulated evolution of theWest Antarctic ice sheetmore »varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighingthe increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelfcollapse, here assumed to be caused by large amounts of liquid water ponding at the surface ofice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without iceshelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, thecalibration of these melt rates based on oceanic conditions taken outside of ice shelf cavitiesand the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario basedon two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared tosimulations done under present-day conditions for the two CMIP5 forcings used and displaylimited mass gain in East Antarctica.« less