skip to main content


Search for: All records

Creators/Authors contains: "Sun, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A computational search for stable structures among both α and β phases of ternary ATB4borides (A= Mg, Ca, Sr, Ba, Al, Ga, and Zn,Tis3dor4dtransition elements) has been performed. We found that α-ATB4compounds withA= Mg, Ca, Al, andT = V, Cr, Mn, Fe, Ni, and Co form a family of structurally stable or almost stable materials. These systems are metallic in non-magnetic states and characterized by the formation of the localized molecular-like state of3dtransition metal atom dimers, which leads to the appearance of numerous Van Hove singularities in the electronic spectrum. The closeness of such singularities to the Fermi level can be easily tuned by electron doping. For the atoms in the middle of the3drow (Cr, Mn, and Fe), these singularities led to magnetic instabilities and magnetic ground states with a weakly metallic or semiconducting nature. Such states appear as non-trivial coexistence of the different spin ladders formed by magnetic dimers of3delements. These magnetic states can be characterized as an analog of the spin glass state. Experimental attempts to produce MgFeB4and associated challenges are discussed, and promising directions for further synthetic studies are formulated.

     
    more » « less
  2. Abstract We present LDA + U sc calculations of high-spin (HS) and low-spin (LS) states in ferropericlase (fp) with an iron concentration of 18.75%. The Hubbard parameter U is determined self-consistently with structures optimized at arbitrary pressures. We confirm a strong dependence of U on the pressure and spin state. Static calculations confirm that the antiferromagnetic configuration is more stable than the ferromagnetic one in the HS state, consistent with low-temperature measurements. Phonon calculations guarantee the dynamical stability of HS and LS states throughout the pressure range of the Earth mantle. Compression curves for HS and LS states agree well with experiments. Using a non-ideal mixing model for the HS to LS states solid solution, we obtain a crossover starting at ∼45 GPa at room temperature and considerably broader than previous results. The spin-crossover phase diagram is calculated, including vibrational, magnetic, electronic, and non-ideal HS–LS entropic contributions. Our results suggest the mixed-spin state predominates in fp in most of the lower mantle. 
    more » « less
  3. Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting. 
    more » « less