Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Empirical studies have demonstrated the effectiveness of (score-based) diffusion models in generating high-dimensional data, such as texts and images, which typically exhibit a low-dimensional manifold nature. These empirical successes raise the theoretical question of whether score-based diffusion models can optimally adapt to low-dimensional manifold structures. While recent work has validated the minimax optimality of diffusion models when the target distribution admits a smooth density with respect to the Lebesgue measure of the ambient data space, these findings do not fully account for the ability of diffusion models in avoiding the the curse of dimensionality when estimating high-dimensional distributions. This work considers two common classes of diffusion models: Langevin diffusion and forward-backward diffusion. We show that both models can adapt to the intrinsic manifold structure by showing that the convergence rate of the inducing distribution estimator depends only on the intrinsic dimension of the data. Moreover, our considered estimator does not require knowing or explicitly estimating the manifold. We also demonstrate that the forward-backward diffusion can achieve the minimax optimal rate under the Wasserstein metric when the target distribution possesses a smooth density with respect to the volume measure of the low-dimensional manifold.more » « lessFree, publicly-accessible full text available May 2, 2025
-
In this paper, we examine the computational complexity of sampling from a Bayesian posterior (or pseudo-posterior) using the Metropolis-adjusted Langevin algorithm (MALA). MALA first employs a discrete-time Langevin SDE to propose a new state, and then adjusts the proposed state using Metropolis-Hastings rejection. Most existing theoretical analyses of MALA rely on the smoothness and strong log-concavity properties of the target distribution, which are often lacking in practical Bayesian problems. Our analysis hinges on statistical large sample theory, which constrains the deviation of the Bayesian posterior from being smooth and log-concave in a very specific way. In particular, we introduce a new technique for bounding the mixing time of a Markov chain with a continuous state space via the s-conductance profile, offering improvements over existing techniques in several aspects. By employing this new technique, we establish the optimal parameter dimension dependence of d^1/3 and condition number dependence of κ in the non-asymptotic mixing time upper bound for MALA after the burn-in period, under a standard Bayesian setting where the target posterior distribution is close to a d-dimensional Gaussian distribution with a covariance matrix having a condition number κ. We also prove a matching mixing time lower bound for sampling from a multivariate Gaussian via MALA to complement the upper bound.more » « lessFree, publicly-accessible full text available April 24, 2025
-
null (Ed.)In this paper, we consider variational autoencoders (VAE) via empirical Bayes estimation, referred to as Empirical Bayes Variational Autoencoders (EBVAE), which is a general framework including popular VAE methods as special cases. Despite the widespread use of VAE, its theoretical aspects are less explored in the literature. Motivated by this, we establish a general theoretical framework for analyzing the excess risk associated with EBVAE under the setting of density estimation, covering both parametric and nonparametric cases, through the lens of M-estimation. As an application, we analyze the excess risk of the commonly-used EBVAE with Gaussian models and highlight the importance of covariance matrices of Gaussian encoders and decoders in obtaining a good statistical guarantee, shedding light on the empirical observations reported in the literature.more » « less