Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Metals in the diffuse, ionized gas at the boundary between the Milky Way’s interstellar medium (ISM) and circumgalactic medium, known as the disk–halo interface (DHI), are valuable tracers of the feedback processes that drive the Galactic fountain. However, metallicity measurements in this region are challenging due to obscuration by the Milky Way ISM and uncertain ionization corrections that affect the total hydrogen column density. In this work, we constrain ionization corrections to neutral hydrogen column densities using precisely measured electron column densities from the dispersion measures of pulsars that lie in the same globular clusters as UV-bright targets with high-resolution absorption spectroscopy. We address the blending of absorption lines with the ISM by jointly fitting Voigt profiles to all absorption components. We present our metallicity estimates for the DHI of the Milky Way based on detailed photoionization modeling of the absorption from ionized metal lines and ionization-corrected total hydrogen columns. Generally, the gas clouds show a large scatter in metallicity, ranging between 0.04 and 3.2Z⊙, implying that the DHI consists of a mixture of gaseous structures having multiple origins. We estimate the inflow and outflow timescales of the DHI ionized clouds to be 6–35 Myr. We report the detection of an infalling cloud with supersolar metallicity that suggests a Galactic fountain mechanism, whereas at least one low-metallicity outflowing cloud (Z< 0.1Z⊙) poses a challenge for Galactic fountain and feedback models.more » « less
- 
            Abstract We present a sample of 305 QSO candidates having ∣b∣ < 30°, the majority with GALEX magnitudes near-UV < 18.75. To generate this sample, we apply UV–IR color selection criteria to photometric data from the Ultraviolet Galactic Plane Survey as part of GALEX-CAUSE, the Million Quasars Catalog, Gaia DR2, and Pan-STARRS DR1. 165 of these 305 candidate UV-bright active galactic nuclei (AGN; 54%) have published spectroscopic redshifts from 45 different surveys, confirming them as AGN. We further obtained low-dispersion, optical, long-slit spectra with the Apache Point Observatory 3.5 m, MDM 2.4 m, and MDM 1.3 m telescopes for 84 of the candidates, and confirm 86% (N= 72) as AGN, generally withz< 0.6. Of these 72 confirmed AGN, 25 are newly discovered low-latitude QSOs without any previous spectroscopy. These sources fill a gap in the Galactic latitude coverage of the available samples of known UV-bright QSO background probes. Along with a description of the confirmed QSO properties, we provide the fully reduced, flux- and wavelength-calibrated spectra of 72 low-latitude QSOs through the Mikulski Archive for Space Telescopes. Future Hubble Space Telescope/Cosmic Origins Spectrograph spectroscopy of these low-Galactic-latitude QSOs has the potential to transform our view of the Milky Way and Local Group circumgalactic medium.more » « less
- 
            Abstract The cycling of metals between interstellar gas and dust is a critical aspect of the baryon cycle of galaxies, yet our understanding of this process is limited. This study focuses on understanding dust depletion effects in the low-metallicity regime (<20%Z⊙) typical of cosmic noon. Using medium-resolution UV spectroscopy from the Cosmic Origins Spectrograph on board the Hubble Space Telescope, gas-phase abundances and depletions of iron and sulfur were derived toward 18 sight lines in local dwarf galaxies IC 1613 and Sextans A. The results show that the depletion of Fe and S is consistent with that found in the Milky Way (MW), LMC, and SMC. The depletion level of Fe increases with gas column density, indicating dust growth in the interstellar medium. The level of Fe depletion decreases with decreasing metallicity, resulting in the fraction of iron in gas ranging from 3% in the MW to 9% in IC 1613 and ∼19% in Sextans A. The dust-to-gas and dust-to-metal ratios (D/G,D/M) for these dwarf galaxies were estimated based on the MW relations between the depletion of Fe and other elements. The study finds thatD/Gdecreases only slightly sublinearly with metallicity, withD/Mdecreasing from 0.41 ± 0.05 in the MW to 0.11 ± 0.11 at 0.10Z⊙(at logN(H) = 21 cm−2). The trend ofD/Gversus metallicity using depletion in local systems is similar to that inferred in Damped Lyαsystems from abundance ratios but lies higher than the trend inferred from far-IR measurements in nearby galaxies.more » « less
- 
            Abstract We present an analysis of Hubble Space Telescope COS/G160M observations of CIVin the inner circumgalactic medium (CGM) of a novel sample of eightz∼ 0,L≈L⋆galaxies, paired with UV-bright QSOs at impact parameters (Rproj) between 25 and 130 kpc. The galaxies in this stellar-mass-controlled sample (log10M⋆/M⊙∼ 10.2–10.9M⊙) host supermassive black holes (SMBHs) with dynamically measured masses spanning log10MBH/M⊙∼ 6.8–8.4; this allows us to compare our results with models of galaxy formation where the integrated feedback history from the SMBH alters the CGM over long timescales. We find that the CIVcolumn density measurements (NC IV; average log10NC IV,CH= 13.94 ± 0.09 cm−2) are largely consistent with existing measurements from other surveys ofNC IVin the CGM (average log10NC IV,Lit= 13.90 ± 0.08 cm−2), but do not show obvious variation as a function of the SMBH mass. By contrast, specific star formation rate (sSFR) is highly correlated with the ionized content of the CGM. We find a large spread in sSFR for galaxies with log10MBH/M⊙> 7.0, where the CGM CIVcontent shows a clear dependence on galaxy sSFR but notMBH. Our results do not indicate an obvious causal link between CGM CIVand the mass of the galaxy’s SMBH; however, through comparisons to the EAGLE, Romulus25, and IllustrisTNG simulations, we find that our sample is likely too small to constrain such causality.more » « less
- 
            Braving the Storm: Quantifying Disk-wide Ionized Outflows in the Large Magellanic Cloud with ULLYSESAbstract The Large Magellanic Cloud (LMC) is home to many Hiiregions, which may lead to significant outflows. We examine the LMC’s multiphase gas (T∼104-5K) in Hi, Sii, Siiv, and Civusing 110 stellar sight lines from the Hubble Space Telescope’s Ultraviolet Legacy Library of Young Stars as Essential Standards program. We develop a continuum fitting algorithm based on the concept of Gaussian process regression and identify reliable LMC interstellar absorption overvhelio= 175–375 km s−1. Our analyses show disk-wide ionized outflows in Siivand Civacross the LMC with bulk velocities of ∣vout, bulk∣ ∼ 20–60 km s−1, which indicates that most of the outflowing mass is gravitationally bound. The outflows’ column densities correlate with the LMC’s star formation rate surface densities (ΣSFR), and the outflows with higher ΣSFRtend to be more ionized. Considering outflows from both sides of the LMC as traced by Civ, we conservatively estimate a total outflow rate of and a mass-loading factor ofη≳ 0.15. We compare the LMC’s outflows with those detected in starburst galaxies and simulation predictions, and find a universal scaling relation of over a wide range of star-forming conditions (ΣSFR∼ 10−4.5–102M⊙yr−1kpc−2). Lastly, we find that the outflows are corotating with the LMC’s young stellar disk and the velocity field does not seem to be significantly impacted by external forces; we thus speculate on the existence of a bow shock leading the LMC, which may have shielded the outflows from ram pressure as the LMC orbits the Milky Way.more » « less
- 
            Abstract This study addresses how the incidence rate of strong Oviabsorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure Oviabsorption within 400 projected kpc and 300 km s−1of 52 galaxies withM*∼ 3 × 1010M⊙. The galaxies have redshifts 0.12 <z< 0.6, stellar masses 1010.1M⊙<M*< 1010.9M⊙, and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density Oviabsorption (NOVI≥ 1014.3cm−2) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the Ovicovering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3σ-equivalent statistical significance. On average, the CGM of star-forming galaxies withM*∼ 3 × 1010M⊙contains more Ovithan the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass.more » « less
- 
            Abstract We combine data sets from the CGM2and CASBaH surveys to model a transition point,Rcross, between circumgalactic and intergalactic media (CGM and IGM, respectively). In total, our data consist of 7244 galaxies atz< 0.5 with precisely measured spectroscopic redshifts, all having impact parameters of 0.01–20 comoving Mpc from 28 QSO sightlines with high-resolution UV spectra that cover HiLyα. Our best-fitting model is a two-component model that combines a 3D absorber–galaxy cross-correlation function with a simple Gaussian profile at inner radii to represent the CGM. By design, this model gives rise to a determination ofRcrossas a function of galaxy stellar mass, which can be interpreted as the boundary between the CGM and IGM. For galaxies with 108≤M⋆/M⊙≤ 1010.5, we find thatRcross(M⋆) ≈ 2.0 ± 0.6Rvir. Additionally, we find excellent agreement betweenRcross(M⋆) and the theoretically determined splashback radius for galaxies in this mass range. Overall, our results favor models of galaxy evolution atz< 0.5 that distributeT≈ 104K gas to distances beyond the virial radius.more » « less
- 
            Abstract The metallicity and gas density dependence of interstellar depletions, the dust-to-gas (D/G), and dust-to-metal (D/M) ratios have important implications for how accurately we can trace the chemical enrichment of the universe, either by using FIR dust emission as a tracer of the ISM or by using spectroscopy of damped Ly α systems to measure chemical abundances over a wide range of redshifts. We collect and compare large samples of depletion measurements in the Milky Way (MW), Large Magellanic Cloud (LMC) ( Z = 0.5 Z ⊙ ), and Small Magellanic Cloud (SMC) ( Z = 0.2 Z ⊙ ). The relations between the depletions of different elements do not strongly vary between the three galaxies, implying that abundance ratios should trace depletions accurately down to 20% solar metallicity. From the depletions, we derive D/G and D/M. The D/G increases with density, consistent with the more efficient accretion of gas-phase metals onto dust grains in the denser ISM. For log N (H) > 21 cm −2 , the depletion of metallicity tracers (S, Zn) exceeds −0.5 dex, even at 20% solar metallicity. The gas fraction of metals increases from the MW to the LMC (factor 3) and SMC (factor 6), compensating for the reduction in total heavy element abundances and resulting in those three galaxies having the same neutral gas-phase metallicities. The D/G derived from depletions are respective factors of 2 (LMC) and 5 (SMC) higher than the D/G derived from FIR, 21 cm, and CO emission, likely due to the combined uncertainties on the dust FIR opacity and on the depletion of carbon and oxygen.more » « less
- 
            We use hydrodynamical simulations of two Milky Way-mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sightlines of the simulated galaxies' CGM and use Voigt profile fitting methods to extract ion column densities, Doppler-b parameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky-Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower OVI absorption features and broader SiIII absorption features, a quality which is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM.more » « less
- 
            Abstract We use hydrodynamical simulations of two Milky Way–mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sight lines of the simulated galaxies’ CGM and use Voigt profile-fitting methods to extract ion column densities, Doppler-bparameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower Oviabsorption features and broader Siiiiabsorption features, a quality that is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available