skip to main content


Search for: All records

Creators/Authors contains: "Thimsen, Elijah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 19, 2025
  2. Nonthermal plasmas in contact with liquids have been shown to generate a variety of reactive species capable of initiating reduction–oxidation (redox) reactions at the electrochemically active plasma–liquid interface. In conventional electrochemical cells, selective redox chemistry is achieved by controlling the reduction potential at the solid electrode–electrolyte interface by applying a bias via an external circuit. In the case of plasma–liquid systems, an analogous means of tuning the reduction potential near the interface has not clearly been identified. When treated as a floating surface, the liquid is expected to adopt a net negative charge to balance the flux of hot electrons and relatively cold positive ions. The reduction potential near the plasma–liquid interface is hypothesized to be proportional to the floating potential, which can be approximated using an analytical model provided the plasma parameters are known. Herein, we present a framework for correlating the electron density and electron temperature of a noble gas plasma jet to the reduction potential near the plasma–liquid interface. The plasma parameters were acquired for an argon atmospheric plasma jet in contact with an aqueous solution by means of laser Thomson scattering. The reduction potential was determined using identical reference electrodes to measure the potential difference between the plasma–liquid interface and bulk solution. Interestingly, the measured reduction potentials near the plasma–liquid interface were found to be in good agreement with the model-predicted values determined using the plasma parameters obtained from the Thomson scattering experiments. 
    more » « less
  3. Abstract Low-pressure nonthermal flowing plasmas are widely used for the gas-phase synthesis of nanoparticles and quantum dots of materials that are difficult or impractical to synthesize using other techniques. To date, the impact of temporary electrostatic particle trapping in these plasmas has not been recognized, a process that may be leveraged to control particle properties. Here, we present experimental and computational evidence that, during their growth in the plasma, sub-10 nm silicon particles become temporarily confined in an electrostatic trap in radio-frequency excited plasmas until they grow to a size at which the increasing drag force imparted by the flowing gas entrains the particles, carrying them out of the trap. We demonstrate that this trapping enables the size filtering of the synthesized particles, leading to highly monodisperse particle sizes, as well as the electrostatic focusing of the particles onto the reactor centerline. Understanding of the mechanisms and utilization of such particle trapping will enable the design of plasma processes with improved size control and the ability to grow heterostructured nanoparticles. 
    more » « less
  4. null (Ed.)
    Nonthermal plasma (NTP) offers a unique synthesis environment capable of producing nanocrystals of high melting point materials at relatively low gas temperatures. Despite the rapidly growing material library accessible through NTP synthesis, designing processes for new materials is predominantly empirically driven. Here, we report on the synthesis of both amorphous alumina and γ-Al 2 O 3 nanocrystals and present a simple particle heating model that is suitable for predicting the plasma power necessary for crystallization. The heating model only requires the composition, temperature, and pressure of the background gas along with the reactor geometry to calculate the temperature of particles suspended in the plasma as a function of applied power. Complete crystallization of the nanoparticle population was observed when applied power was greater than the threshold where the calculated particle temperature is equal to the crystallization temperature of amorphous alumina. 
    more » « less
  5. Abstract

    In this work, we demonstrate plasma‐catalytic synthesis of hydrogen and acrylonitrile (AN) from CH4and N2. The process involves two steps: (1) plasma synthesis of C2H2and HCN in a nominally 1:1 stoichiometric ratio with high yield up to 90% and (2) downstream thermocatalytic reaction of these intermediates to make AN. The effect of process parameters on product distributions and specific energy requirements are reported. If the catalytic conversion of C2H2and HCN in the downstream thermocatalytic step to AN were perfect, which will require further improvements in the thermocatalytic reactor, then at the maximum output of our 1 kW radiofrequency 13.56 MHz transformer, a specific energy requirement of 73 kWh kgAN−1was determined. The expectation is that scaling up the process to higher throughputs would result in decreases in specific energy requirement into the predicted economically viable range less than 10 kWh kgAN−1.

     
    more » « less