Atmospheric rivers (ARs) impacting western North America are analyzed under climate intervention applying stratospheric aerosol injections (SAI) using simulations produced by the Whole Atmosphere Community Climate Model. Sulfur dioxide injections are strategically placed to maintain present-day global, interhemispheric, and equator-to-pole surface temperatures between 2020 and 2100 using a high forcing climate scenario. Three science questions are addressed: (1) How will western North American ARs change by the end of the century with SAI applied, (2) How is this different from 2020 conditions, and (3) How will the results differ with no future climate intervention. Under SAI, ARs are projected to increase by the end of the 21st century for southern California and decrease in the Pacific Northwest and coastal British Columbia, following changes to the low-level wind. Compared to 2020 conditions, the increase in ARs is not significant. The character of AR precipitation changes under geoengineering results in fewer extreme rainfall events and more moderate ones.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
The sensitivity of sea ice to fire emissions highlights climate model uncertainty related to the accuracy of prescribed forcings.Free, publicly-accessible full text available July 29, 2023
-
Abstract. Simulating the complex aerosol microphysical processes in a comprehensive Earth system model can be very computationally intensive; therefore many models utilize a modal approach, where aerosol size distributions are represented by observation-derived lognormal functions, and internal mixing between different aerosol species within an aerosol mode is often assumed. This approach has been shown to yield satisfactory results across a large array of applications, but there may be cases where the simplification in this approach may produce some shortcomings. In this work we show specific conditions under which the current approximations used in some modal approaches might yield incorrect answers. Using results from the Community Earth System Model v1 (CESM1) Geoengineering Large Ensemble (GLENS) project, we analyze the effects in the troposphere of a continuous increasing load of sulfate aerosols in the stratosphere, with the aim of counteracting the surface warming produced by non-mitigated increasing greenhouse gas (GHG) concentrations between 2020–2100. We show that the simulated results pertaining to the evolution of sea salt and dust aerosols in the upper troposphere are not realistic due to internal mixing assumptions in the modal aerosol treatment, which in this case reduces the size, and thus the settling velocities, of those particles and ultimatelymore »
-
Abstract. As part of the Geoengineering Model IntercomparisonProject a numerical experiment known as G6sulfur has been designed in whichtemperatures under a high-forcing future scenario (SSP5-8.5) are reduced tothose under a medium-forcing scenario (SSP2-4.5) using the proposedgeoengineering technique of stratospheric aerosol intervention (SAI).G6sulfur involves introducing sulfuric acid aerosol into the tropicalstratosphere where it reflects incoming sunlight back to space, thus coolingthe planet. Here, we compare the results from six Earth-system models thathave performed the G6sulfur experiment and examine how SAI affects twoimportant modes of natural variability, the northern wintertime NorthAtlantic Oscillation (NAO) and the Quasi-Biennial Oscillation (QBO).Although all models show that SAI is successful in reducing global meantemperature as designed, they are also consistent in showing that it forcesan increasingly positive phase of the NAO as the injection rate increasesover the course of the 21st century, exacerbating precipitationreductions over parts of southern Europe compared with SSP5-8.5. In contrast to the robust result for the NAO, there is less consistency for the impact on the QBO, but the results nevertheless indicate a risk that equatorial SAI could cause the QBO to stall and become locked in a phase with permanent westerly winds in the lower stratosphere.
-
Abstract. The realization of the difficulty of limiting global-meantemperatures to within 1.5 or 2.0 ∘C abovepre-industrial levels stipulated by the 21st Conference of Parties inParis has led to increased interest in solar radiation management (SRM)techniques. Proposed SRM schemes aim to increase planetary albedo to reflectmore sunlight back to space and induce a cooling that acts to partiallyoffset global warming. Under the auspices of the Geoengineering ModelIntercomparison Project, we have performed model experiments whereby globaltemperature under the high-forcing SSP5-8.5 scenario is reduced to followthat of the medium-forcing SSP2-4.5 scenario. Two different mechanisms toachieve this are employed: the first via a reduction in the solar constant(experiment G6solar) and the second via modelling injections of sulfurdioxide (experiment G6sulfur) which forms sulfate aerosol in thestratosphere. Results from two state-of-the-art coupled Earth system models(UKESM1 and CESM2-WACCM6) both show an impact on the North AtlanticOscillation (NAO) in G6sulfur but not in G6solar. Both models show apersistent positive anomaly in the NAO during the Northern Hemisphere winterseason in G6sulfur, suggesting an increase in zonal flow and an increase inNorth Atlantic storm track activity impacting the Eurasian continent and leadingto high-latitude warming over Europe and Asia. These results are broadlyconsistent with previous findings which show similar impacts fromstratospheric volcanicmore »
-
As the prospect of average global warming exceeding 1.5°C becomes increasingly likely, interest in supplementing mitigation and adaptation with solar geoengineering (SG) responses will almost certainly rise. For example stratospheric aerosol injection to cool the planet could offset some of the warming for a given accumulation of atmospheric greenhouse gases ( 1 ). However, the physical and social science literature on SG remains modest compared with mitigation and adaptation. We outline three research themes for advancing policy-relevant social science related to SG: (i) SG costs, benefits, risks, and uncertainty; (ii) the political economy of SG deployment; and (iii) SG’s role in a climate strategy portfolio.
-
Abstract The stratospheric influence on summertime high surface ozone (
) events is examined using a twenty-year simulation from the Whole Atmosphere Community Climate Model. We find that transported from the stratosphere makes a significant contribution to the surface variability where background surface exceeds the 95th percentile, especially over western U.S. Maximum covariance analysis is applied to anomalies paired with stratospheric tracer anomalies to identify the stratospheric intrusion and the underlying dynamical mechanism. The first leading mode corresponds to deep stratospheric intrusions in the western and northern tier of the U.S., and intensified northeasterlies in the mid-to-lower troposphere along the west coast, which also facilitate the transport to the eastern Pacific Ocean. The second leading mode corresponds to deep intrusions over the Intermountain Regions. Both modes are associated with eastward propagating baroclinic systems, which are amplified near the end of the North Pacific storm tracks, leading to strong descents over the western U.S. -
As the effects of anthropogenic climate change become more severe, several approaches for deliberate climate intervention to reduce or stabilize Earth’s surface temperature have been proposed. Solar radiation modification (SRM) is one potential approach to partially counteract anthropogenic warming by reflecting a small proportion of the incoming solar radiation to increase Earth’s albedo. While climate science research has focused on the predicted climate effects of SRM, almost no studies have investigated the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, community, population, and organism. Complex interactions among Earth’s climate system and living systems would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAI), a well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earth’s surface temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of SAI on ecological systems. Desired ecological outcomes might also inform development of future SAI implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between ecologists and climate scientists would identify a common set of SAI research goalsmore »