skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ting, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A deep neural network (DNN)-based adaptive controller with a real-time and concurrent learning (CL)-based adaptive update law is developed for a class of uncertain, nonlinear dynamic systems. The DNN in the control law is used to approximate the uncertain nonlinear dynamic model. The inner-layer weights of the DNN are updated offline using data collected in real-time; whereas, the output-layer DNN weights are updated online (i.e., in real-time) using the Lyapunov- and CL-based adaptation law. Specifically, the inner-layer weights of the DNN are trained offline (concurrent to real-time execution) after a sufficient amount of data is collected in real-time to improve the performance of the system, and after training is completed the inner-layer DNN weights are updated in batch-updates. The key development in this work is that the output-layer DNN update law is augmented with CL-based terms to ensure that the output-layer DNN weight estimates converge to within a ball of their optimal values. A Lyapunov-based stability analysis is performed to ensure semi-global exponential convergence to an ultimate bound for the trajectory tracking errors and the output-layer DNN weight estimation errors. 
    more » « less
    Free, publicly-accessible full text available July 10, 2025
  2. This paper presents a deep neural network (DNN)-and concurrent learning (CL)-based adaptive control architecture for an Euler-Lagrange dynamic system that guarantees system performance for the first time. The developed controller includes two DNNs with the same output-layer weights to ensure feasibility of the control system. In this work, a Lyapunov-and CL-based update law is developed to update the output-layer DNN weights in real-time; whereas, the inner-layer DNN weights are updated offline using data that is collected in real-time. A Lyapunov-like analysis is performed to prove that the proposed controller yields semi-global exponential convergence to an ultimate bound for the output-layer weight estimation errors and for the trajectory tracking errors. 
    more » « less
    Free, publicly-accessible full text available July 10, 2025
  3. Hybrid exoskeletons are used to blend the rehabilitative efficacy and mitigate the shortcomings of functional electrical stimulation (FES) and exoskeleton-based rehabilitative solutions. This paper introduces a novel nonlinear controller that may potentially improve the rehabilitative efficiency of a lower limb hybrid exoskeleton by implementing four key features into the FES and exoskeleton controllers. First, the FES input to the user’s muscles is saturated based on user preference to ensure user comfort. Second, rather than discarding the excess control effort from the saturated FES input, it is redirected into the exoskeleton’s motor controller. Third, a safe deep neural network (DNN) is designed to estimate the unknown dynamics of the hybrid exoskeleton and the DNN is implemented in the FES controller to improve the control efficiency and tracking performance. Fourth, an adaptive update law is designed to estimate the unknown muscle control effectiveness to facilitate the implementation of the DNN. Lyapunov stability-based methods are used to generate real-time adaptive update laws that will train the adaptive estimate of the muscle effectiveness and the output layer weights of the DNN in real-time, ensure the effectiveness and safety of the controllers, and prove global asymptotic tracking of the desired trajectory. 
    more » « less
  4. Abstract Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits. 
    more » « less