Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Humans have drastically disrupted the global sediment cycle. Suspended sediment flux and concentration are key controls over both river morphology and river ecosystems. Our ability to understand sediment dynamics within river corridors is limited by observations. Here, we present RivSed, a database of satellite observations of suspended sediment concentration (SSC) from 1984 to 2018 across 460 large (>60 m wide) US rivers that provides a new, spatially explicit view of river sediment. We found that 32% of US rivers have a declining temporal trend in sediment concentration, with a mean reduction of 40% since 1984, whereas only 2% have an increasing trend. Most rivers (52%) show decreasing sediment concentration longitudinally moving downstream, typically due to a few large dams rather than the accumulated effect of many small dams. Comparing our observations with modeled ‘pre-dam’ longitudinal SSC, most rivers (53%) show different patterns. However, contemporary longitudinal patterns in concentration are remarkably stable from year to year since 1984, with more stability in large, highly managed rivers with less cropland. RivSed has broad applications for river geomorphology and ecology and highlights anthropogenic effects on river corridors across the US.
-
Abstract Lake trophic state is a key ecosystem property that integrates a lake’s physical, chemical, and biological processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and analyze lake trophic state with reproducible, robust methods across time and space. We used Landsat surface reflectance data to create the first compendium of annual lake trophic state for 55,662 lakes of at least 10 ha in area throughout the contiguous United States from 1984 through 2020. The dataset was constructed with FAIR data principles (Findable, Accessible, Interoperable, and Reproducible) in mind, where data are publicly available, relational keys from parent datasets are retained, and all data wrangling and modeling routines are scripted for future reuse. Together, this resource offers critical data to address basic and applied research questions about lake water quality at a suite of spatial and temporal scales.
-
Abstract Global change may contribute to ecological changes in high-elevation lakes and reservoirs, but a lack of data makes it difficult to evaluate spatiotemporal patterns. Remote sensing imagery can provide more complete records to evaluate whether consistent changes across a broad geographic region are occurring. We used Landsat surface reflectance data to evaluate spatial patterns of contemporary lake color (2010–2020) in 940 lakes in the U.S. Rocky Mountains, a historically understudied area for lake water quality. Intuitively, we found that most of the lakes in the region are blue (66%) and were found in steep-sided watersheds (>22.5°) or alternatively were relatively deep (>4.5 m) with mean annual air temperature (MAAT) <4.5°C. Most green/brown lakes were found in relatively shallow sloped watersheds with MAAT ⩾4.5°C. We extended the analysis of contemporary lake color to evaluate changes in color from 1984 to 2020 for a subset of lakes with the most complete time series ( n = 527). We found limited evidence of lakes shifting from blue to green states, but rather, 55% of the lakes had no trend in lake color. Surprisingly, where lake color was changing, 32% of lakes were trending toward bluer wavelengths, and only 13% shifted toward greener wavelengths. Lakes and reservoirs with the most substantial shifts toward blue wavelengths tended to be in urbanized, human population centers at relatively lower elevations. In contrast, lakes that shifted to greener wavelengths did not relate clearly to any lake or landscape features that we evaluated, though declining winter precipitation and warming summer and fall temperatures may play a role in some systems. Collectively, these results suggest that the interactions between local landscape factors and broader climatic changes can result in heterogeneous, context-dependent changes in lake color.more » « less
-
null (Ed.)Artisanal and small-scale gold mining (ASGM) is the largest global source of anthropogenic mercury emissions. However, little is known about how effectively mercury released from ASGM is converted into the bioavailable form of methylmercury in ASGM-altered landscapes. Through examination of ASGM-impacted river basins in Peru, we show that lake area in heavily mined watersheds has increased by 670% between 1985 and 2018 and that lakes in this area convert mercury into methylmercury at net rates five to seven times greater than rivers. These results suggest that synergistic increases in lake area and mercury loading associated with ASGM are substantially increasing exposure risk for people and wildlife. Similarly, marked increases in lake area in other ASGM hot spots suggest that “hydroscape” (hydrological landscape) alteration is an important and previously unrecognized component of mercury risk from ASGM.more » « less
-
Abstract In land surface models (LSMs), the hydraulic properties of the subsurface are commonly estimated according to the texture of soils at the Earth's surface. This approach ignores macropores, fracture flow, heterogeneity, and the effects of variable distribution of water in the subsurface on
effective watershed‐scale hydraulic variables. Using hydrograph recession analysis, we empirically constrain estimates of watershed‐scale effective hydraulic conductivities (K ) and effective drainable aquifer storages (S ) of all reference watersheds in the conterminous United States for which sufficient streamflow data are available (n = 1,561). Then, we use machine learning methods to model these properties across the entire conterminous United States. Model validation results in high confidence for estimates of log(K ) (r 2 > 0.89; 1% < bias < 9%) and reasonable confidence forS (r 2 > 0.83; −70% < bias < −18%). Our estimates of effectiveK are, on average, two orders of magnitude higher than comparable soil‐texture‐based estimates of averageK , confirming the importance of soil structure and preferential flow pathways at the watershed scale. Our estimates of effectiveS compare favorably with recent global estimates of mobile groundwater and are spatially heterogeneous (5–3,355 mm). Because estimates ofS are much lower than the global maximums generally used in LSMs (e.g., 5,000 mm in Noah‐MP), they may serve both to limit model spin‐up time and to constrain model parameters to more realistic values. These results represent the first attempt to constrain estimates of watershed‐scale effective hydraulic variables that are necessary for the implementation of LSMs for the entire conterminous United States.