Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.
Free, publicly-accessible full text available July 1, 2025 -
Free, publicly-accessible full text available March 14, 2025
-
Central Arctic properties and processes are important to the regional and global coupled climate system. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network (DN) of autonomous ice-tethered systems aimed to bridge gaps in our understanding of temporal and spatial scales, in particular with respect to the resolution of Earth system models. By characterizing variability around local measurements made at a Central Observatory, the DN covers both the coupled system interactions involving the ocean-ice-atmosphere interfaces as well as three-dimensional processes in the ocean, sea ice, and atmosphere. The more than 200 autonomous instruments (“buoys”) were of varying complexity and set up at different sites mostly within 50 km of the Central Observatory. During an exemplary midwinter month, the DN observations captured the spatial variability of atmospheric processes on sub-monthly time scales, but less so for monthly means. They show significant variability in snow depth and ice thickness, and provide a temporally and spatially resolved characterization of ice motion and deformation, showing coherency at the DN scale but less at smaller spatial scales. Ocean data show the background gradient across the DN as well as spatially dependent time variability due to local mixed layer sub-mesoscale and mesoscale processes, influenced by a variable ice cover. The second case (May–June 2020) illustrates the utility of the DN during the absence of manually obtained data by providing continuity of physical and biological observations during this key transitional period. We show examples of synergies between the extensive MOSAiC remote sensing observations and numerical modeling, such as estimating the skill of ice drift forecasts and evaluating coupled system modeling. The MOSAiC DN has been proven to enable analysis of local to mesoscale processes in the coupled atmosphere-ice-ocean system and has the potential to improve model parameterizations of important, unresolved processes in the future.
Free, publicly-accessible full text available January 1, 2025 -
Abstract The sub-kilometre scale distribution of snow depth on Arctic sea ice impacts atmosphere-ice fluxes of energy and mass, and is of importance for satellite estimates of sea-ice thickness from both radar and lidar altimeters. While information about the mean of this distribution is increasingly available from modelling and remote sensing, the full distribution cannot yet be resolved. We analyse 33 539 snow depth measurements from 499 transects taken at Soviet drifting stations between 1955 and 1991 and derive a simple statistical distribution for snow depth over multi-year ice as a function of only the mean snow depth. We then evaluate this snow depth distribution against snow depth transects that span first-year ice to multiyear ice from the MOSAiC, SHEBA and AMSR-Ice field campaigns. Because the distribution can be generated using only the mean snow depth, it can be used in the downscaling of several existing snow depth products for use in flux modelling and altimetry studies.more » « less
-
Abstract. Wind-driven redistribution of snow on sea ice alters itstopography and microstructure, yet the impact of these processes on radarsignatures is poorly understood. Here, we examine the effects of snowredistribution over Arctic sea ice on radar waveforms and backscattersignatures obtained from a surface-based, fully polarimetric Ka- and Ku-bandradar at incidence angles between 0∘ (nadir) and 50∘.Two wind events in November 2019 during the Multidisciplinary drifting Observatory forthe Study of Arctic Climate (MOSAiC) expedition are evaluated. During both events, changes in Ka- andKu-band radar waveforms and backscatter coefficients at nadir are observed,coincident with surface topography changes measured by a terrestrial laserscanner. At both frequencies, redistribution caused snow densification atthe surface and the uppermost layers, increasing the scattering at theair–snow interface at nadir and its prevalence as the dominant radar scattering surface. The waveform data also detected the presence of previousair–snow interfaces, buried beneath newly deposited snow. The additionalscattering from previous air–snow interfaces could therefore affect therange retrieved from Ka- and Ku-band satellite altimeters. With increasingincidence angles, the relative scattering contribution of the air–snowinterface decreases, and the snow–sea ice interface scattering increases.Relative to pre-wind event conditions, azimuthally averaged backscatter atnadir during the wind events increases by up to 8 dB (Ka-band) and 5 dB (Ku-band). Results show substantial backscatter variability within the scanarea at all incidence angles and polarizations, in response to increasingwind speed and changes in wind direction. Our results show that snowredistribution and wind compaction need to be accounted for to interpretairborne and satellite radar measurements of snow-covered sea ice.
-
Abstract. Arctic rain on snow (ROS) deposits liquid water onto existing snowpacks. Upon refreezing, this can form icy crusts at the surface or within the snowpack. By altering radar backscatter and microwave emissivity, ROS over sea ice can influence the accuracy of sea ice variables retrieved from satellite radar altimetry, scatterometers, and passive microwave radiometers. During the Arctic Ocean MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, there was an unprecedented opportunity to observe a ROS event using in situ active and passive microwave instruments similar to those deployed on satellite platforms. During liquid water accumulation in the snowpack from rain and increased melt, there was a 4-fold decrease in radar energy returned at Ku- and Ka-bands. After the snowpack refroze and ice layers formed, this decrease was followed by a 6-fold increase in returned energy. Besides altering the radar backscatter, analysis of the returned waveforms shows the waveform shape changed in response to rain and refreezing. Microwave emissivity at 19 and 89 GHz increased with increasing liquid water content and decreased as the snowpack refroze, yet subsequent ice layers altered the polarization difference. Corresponding analysis of the CryoSat-2 waveform shape and backscatter as well as AMSR2 brightness temperatures further shows that the rain and refreeze were significant enough to impact satellite returns. Our analysis provides the first detailed in situ analysis of the impacts of ROS and subsequent refreezing on both active and passive microwave observations, providing important baseline knowledge for detecting ROS over sea ice and assessing their impacts on satellite-derived sea ice variables.
-
Abstract Snow depth on sea ice is an Essential Climate Variable and a major source of uncertainty in satellite altimetry‐derived sea ice thickness. During winter of the MOSAiC Expedition, the “KuKa” dual‐frequency, fully polarized Ku‐ and Ka‐band radar was deployed in “stare” nadir‐looking mode to investigate the possibility of combining these two frequencies to retrieve snow depth. Three approaches were investigated: dual‐frequency, dual‐polarization and waveform shape, and compared to independent snow depth measurements. Novel dual‐polarization approaches yielded
r 2values up to 0.77. Mean snow depths agreed within 1 cm, even for data sub‐banded to CryoSat‐2 SIRAL and SARAL AltiKa bandwidths. Snow depths from co‐polarized dual‐frequency approaches were at least a factor of four too small and had ar 20.15 or lower.r 2for waveform shape techniques reached 0.72 but depths were underestimated. Snow depth retrievals using polarimetric information or waveform shape may therefore be possible from airborne/satellite radar altimeters. -
Abstract In this study the impact of extreme cyclones on Arctic sea ice in summer is investigated. Examined in particular are relative thermodynamic and dynamic contributions to sea ice volume budgets in the vicinity of Arctic summer cyclones in 2012 and 2016. Results from this investigation illustrate sea ice loss in the vicinity of the cyclone trajectories during each year were associated with different dominant processes: thermodynamic (melting) in the Pacific sector of the Arctic in 2012, and both thermodynamic and dynamic processes in the Pacific sector of the Arctic in 2016. Comparison of both years further suggests that the Arctic minimum sea ice extent is influenced by not only the strength of the cyclone, but also by the timing and location relative to the sea ice edge. Located near the sea ice edge in early August in 2012, and over the central Arctic later in August in 2016, extreme cyclones contributed to comparable sea ice area (SIA) loss, yet enhanced sea ice volume loss in 2012 relative to 2016. Central to a characterization of extreme cyclone impacts on Arctic sea ice from the perspective of thermodynamic and dynamic processes, we present an index describing relative thermodynamic and dynamic contributions to sea ice volume changes. This index helps to quantify and improve our understanding of initial sea ice state and dynamical responses to cyclones in a rapidly warming Arctic, with implications for seasonal ice forecasting, marine navigation, coastal community infrastructure and designation of protected and ecologically sensitive marine zones.more » « less
-
Abstract. In September 2019, the researchicebreaker Polarstern started the largest multidisciplinary Arctic expedition to date,the MOSAiC (Multidisciplinary drifting Observatory for the Study of ArcticClimate) drift experiment. Being moored to an ice floe for a whole year,thus including the winter season, the declared goal of the expedition is tobetter understand and quantify relevant processes within theatmosphere–ice–ocean system that impact the sea ice mass and energy budget,ultimately leading to much improved climate models. Satellite observations,atmospheric reanalysis data, and readings from a nearby meteorologicalstation indicate that the interplay of high ice export in late winter andexceptionally high air temperatures resulted in the longest ice-free summerperiod since reliable instrumental records began. We show, using aLagrangian tracking tool and a thermodynamic sea ice model, that the MOSAiCfloe carrying the Central Observatory (CO) formed in a polynya event northof the New Siberian Islands at the beginning of December 2018. The resultsfurther indicate that sea ice in the vicinity of the CO (<40 kmdistance) was younger and 36 % thinner than the surrounding ice withpotential consequences for ice dynamics and momentum and heat transferbetween ocean and atmosphere. Sea ice surveys carried out on variousreference floes in autumn 2019 verify this gradient in ice thickness, andsediments discovered in ice cores (so-called dirty sea ice) around the COconfirm contact with shallow waters in an early phase of growth, consistentwith the tracking analysis. Since less and less ice from the Siberianshelves survives its first summer (Krumpen et al., 2019), the MOSAiCexperiment provides the unique opportunity to study the role of sea ice as atransport medium for gases, macronutrients, iron, organic matter,sediments and pollutants from shelf areas to the central Arctic Ocean andbeyond. Compared to data for the past 26 years, the sea ice encountered atthe end of September 2019 can already be classified as exceptionally thin,and further predicted changes towards a seasonally ice-free ocean willlikely cut off the long-range transport of ice-rafted materials by theTranspolar Drift in the future. A reduced long-range transport of sea icewould have strong implications for the redistribution of biogeochemicalmatter in the central Arctic Ocean, with consequences for the balance ofclimate-relevant trace gases, primary production and biodiversity in theArctic Ocean.more » « less