skip to main content


Search for: All records

Creators/Authors contains: "Tu, Yisheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Rings and gaps are routinely observed in the dust continuum emission of protoplanetary discs (PPDs). How they form and evolve remains debated. Previous studies have demonstrated the possibility of spontaneous gas rings and gaps formation in wind-launching discs. Here, we show that such gas substructures are unstable to the Rossby wave instability (RWI) through numerical simulations. Specifically, shorter wavelength azimuthal modes develop earlier, and longer wavelength ones dominate later, forming elongated (arc-like) anticyclonic vortices in the rings and (strongly magnetized) cyclonic vortices in the gaps that persist until the end of the simulation. Highly elongated vortices with aspect ratios of 10 or more are found to decay with time in our non-ideal magnetohydrodynamic (MHD) simulation, in contrast with the hydro case. This difference could be caused by magnetically induced motions, particularly strong meridional circulations with large values of the azimuthal component of the vorticity, which may be incompatible with the columnar structure preferred by vortices. The cyclonic and anticyclonic RWI vortices saturate at moderate levels, modifying but not destroying the rings and gaps in the radial gas distribution of the disc. In particular, they do not shut-off the poloidal magnetic flux accumulation in low-density regions and the characteristic meridional flow patterns that are crucial to the ring and gap formation in wind-launching discs. Nevertheless, the RWI and their associated vortices open up the possibility of producing non-axisymmetric dust features observed in a small fraction of PPDs through non-ideal MHD, although detailed dust treatment is needed to explore this possibility.

     
    more » « less
  2. ABSTRACT

    The majority of stars are in binary/multiple systems. How such systems form in turbulent, magnetized cores of molecular clouds in the presence of non-ideal magnetohydrodynamic (MHD) effects remains relatively underexplored. Through athena++-based non-ideal MHD adaptive mesh refinement simulations with ambipolar diffusion, we show that the collapsing protostellar envelope is dominated by dense gravo-magneto-sheetlets, a turbulence-warped version of the classic pseudodisc produced by anisotropic magnetic resistance to the gravitational collapse, in agreement with previous simulations of turbulent, magnetized single-star formation. The sheetlets feed mass, magnetic fields, and angular momentum to a Dense ROtation-Dominated (DROD) structure, which fragments into binary/multiple systems. This DROD fragmentation scenario is a more dynamic variant of the traditional disc fragmentation scenario for binary/multiple formation, with dense spiral filaments created by inhomogeneous feeding from the highly structured larger-scale sheetlets rather than the need for angular momentum transport, which is dominated by magnetic braking. Provided that the local material is sufficiently demagnetized, with a plasma-$\beta$ of 10 or more, collisions between the dense spiralling filaments play a key role in facilitating gravitational collapse and stellar companion formation by pushing the local magnetic Toomre parameter $Q_\mathrm{m}$ below unity. This mechanism can naturally produce in situ misaligned systems on the 100-au scale, often detected with high-resolution Atacama Large Millimeter Array (ALMA) observations. Our simulations also highlight the importance of non-ideal MHD effects, which affect whether fragmentation occurs and, if so, the masses and orbital parameters of the stellar companions formed.

     
    more » « less
  3. ABSTRACT

    Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.

     
    more » « less
  4. ABSTRACT

    We use the polaris radiative transfer code to produce simulated circular polarization Zeeman emission maps of the cyanide (CN) J = 1–0 molecular line transition for two types of protostellar envelope magnetohydrodynamic simulations. Our first model is a low-mass disc envelope system (box length L = 200 au), and our second model is the envelope of a massive protostar (L = 104 au) with a protostellar wind and a CN-enhanced outflow shell. We compute the velocity-integrated Stokes I and V, as well as the implied V/I polarization percentage, for each detector pixel location in our simulated emission maps. Our results show that both types of protostellar environments are in principle accessible with current circular polarization instruments, with each containing swaths of envelope area that yield percentage polarizations that exceed the 1.8 per cent nominal sensitivity limit for circular polarization experiments with the Atacama Large Millimeter/submillimeter Array. In both systems, high-polarization (≳1.8 per cent) pixels tend to lie at an intermediate distance away from the central star and where the line-centre opacity of the CN emission is moderately optically thin (τLC ∼ 0.1–1). Furthermore, our computed V/I values scale roughly with the density-weighted mean line-of-sight magnetic field strength, indicating that Zeeman observations can effectively diagnose the strength of envelope-scale magnetic fields. We also find that pixels with large V/I are preferentially co-located where the absolute value of the velocity-integrated V is also large, suggesting that locations with favourable percentage polarization are also favourable in terms of raw signal.

     
    more » « less
  5. ABSTRACT

    Recent observations indicate that mm/cm-sized grains may exist in the embedded protostellar discs. How such large grains grow from the micron size (or less) in the earliest phase of star formation remains relatively unexplored. In this study, we take a first step to model the grain growth in the protostellar environment, using 2D (axisymmetric) radiation hydrodynamic and grain growth simulations. We show that the grain growth calculations can be greatly simplified by the ‘terminal velocity approximation’, where the dust drift velocity relative to the gas is proportional to its stopping time, which is proportional to the grain size. We find that the grain–grain collision from size-dependent terminal velocity alone is too slow to convert a significant fraction of the initially micron-sized grains into mm/cm sizes during the deeply embedded Class 0 phase. Substantial grain growth is achieved when the grain–grain collision speed is enhanced by a factor of 4. The dust growth above and below the disc midplane enables the grains to settle faster towards the midplane, which increases the local dust-to-gas ratio, which, in turn, speeds up further growth there. How this needed enhancement can be achieved is unclear, although turbulence is a strong possibility that deserves further exploration.

     
    more » « less
  6. ABSTRACT

    With the advent of ALMA, it is now possible to observationally constrain how discs form around deeply embedded protostars. In particular, the recent ALMA C3H2 line observations of the nearby protostar L1527 have been interpreted as evidence for the so-called ‘centrifugal barrier,’ where the protostellar envelope infall is gradually decelerated to a stop by the centrifugal force in a region of super-Keplerian rotation. To test the concept of centrifugal barrier, which was originally based on angular momentum conserving-collapse of a rotating test particle around a fixed point mass, we carry out simple axisymmetric hydrodynamic simulations of protostellar disc formation including a minimum set of ingredients: self-gravity, rotation, and a prescribed viscosity that enables the disc to accrete. We find that a super-Keplerian region can indeed exist when the viscosity is relatively large but, unlike the classic picture of centrifugal barrier, the infalling envelope material is not decelerated solely by the centrifugal force. The region has more specific angular momentum than its surrounding envelope material, which points to an origin in outward angular momentum transport in the disc (subject to the constraint of disc expansion by the infalling envelope), rather than the spin-up of the envelope material envisioned in the classic picture as it falls closer to the centre in order to conserve angular momentum. For smaller viscosities, the super-Keplerian rotation is weaker or non-existing. We conclude that, despite the existence of super-Keplerian rotation in some parameter regime, the classic picture of centrifugal barrier is not supported by our simulations.

     
    more » « less
  7. ABSTRACT Common envelope (CE) evolution is a critical but still poorly understood progenitor phase of many high-energy astrophysical phenomena. Although 3D global hydrodynamic CE simulations have become more common in recent years, those involving an asymptotic giant branch (AGB) primary are scarce, due to the high computational cost from the larger dynamical range compared to red giant branch (RGB) primaries. But CE evolution with AGB progenitors is desirable to simulate because such events are the likely progenitors of most bi-polar planetary nebulae (PNe), and prominent observational testing grounds for CE physics. Here we present a high-resolution global simulation of CE evolution involving an AGB primary and 1-$\mathrm{M_\odot }$ secondary, evolved for 20 orbital revolutions. During the last 16 of these orbits, the envelope unbinds at an almost constant rate of about 0.1–$0.2\, \mathrm{M_\odot \, yr^{-1}}$. If this rate were maintained, the envelope would be unbound in less than $10\, {\rm yr}$. The dominant source of this unbinding is consistent with inspiral; we assess the influence of the ambient medium to be subdominant. We compare this run with a previous run that used an RGB phase primary evolved from the same 2-$\mathrm{M_\odot }$ main-sequence star to assess the influence of the evolutionary state of the primary. When scaled appropriately, the two runs are quite similar, but with some important differences. 
    more » « less
  8. Abstract We compute the forces, torque and rate of work on the companion-core binary due to drag in global simulations of common envelope (CE) evolution for three different companion masses. Our simulations help to delineate regimes when conventional analytic drag force approximations are applicable. During and just prior to the first periastron passage of the in-spiral phase, the drag force is reasonably approximated by conventional analytic theory and peaks at values proportional to the companion mass. Good agreement between global and local 3D “wind tunnel” simulations, including similar net drag force and flow pattern, is obtained for comparable regions of parameter space. However, subsequent to the first periastron passage, the drag force is up to an order of magnitude smaller than theoretical predictions, quasi-steady, and depends only weakly on companion mass. The discrepancy is exacerbated for larger companion mass and when the inter-particle separation reduces to the Bondi-Hoyle-Lyttleton accretion radius, creating a turbulent thermalized region. Greater flow symmetry during this phase leads to near balance of opposing gravitational forces in front of and behind the companion, hence a small net drag. The reduced drag force at late times helps explain why companion-core separations necessary for envelope ejection are not reached by the end of limited duration CE simulations. 
    more » « less