skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valdevit, Lorenzo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Two-photon polymerization direct laser writing (TPP-DLW) is one of the most versatile technologies to additively manufacture complex parts with nanoscale resolution. However, the wide range of mechanical properties that results from the chosen combination of multiple process parameters imposes an obstacle to its widespread use. Here we introduce a thermal post-curing route as an effective and simple method to increase the mechanical properties of acrylate-based TPP-DLW-derived parts by 20-250% and to largely eliminate the characteristic coupling of processing parameters, material properties and part functionality. We identify the underlying mechanism of the property enhancement as a self-initiated thermal curing reaction, which robustly facilitates the high property reproducibility that is essential for any application of TPP-DLW. 
    more » « less
  2. Abstract We demonstrate the use of tip-enhanced Raman spectroscopy (TERS) on polymeric microstructures fabricated by two-photon polymerization direct laser writing (TPP-DLW). Compared to the signal intensity obtained in confocal Raman microscopy, a linear enhancement of almost two times is measured when using TERS. Because the probing volume is much smaller in TERS than in confocal Raman microscopy, the effective signal enhancement is estimated to be ca. 104. We obtain chemical maps of TPP microstructures using TERS with relatively short acquisition times and with high spatial resolution as defined by the metallic tip apex radius of curvature. We take advantage of this high resolution to study the homogeneity of the polymer network in TPP microstructures printed in an acrylic-based resin. We find that the polymer degree of conversion varies by about 30% within a distance of only 100 nm. The combination of high resolution topographical and chemical data delivered by TERS provides an effective analytical tool for studying TPP-DLW materials in a non-destructive way. 
    more » « less
  3. Abstract Materials based on minimal surface geometries have shown superior strength and stiffness at low densities, which makes them promising continuous‐based material platforms for a variety of engineering applications. In this work, it is demonstrated how these mechanical properties can be complemented by dynamic functionalities resulting from robust topological guiding of elastic waves at interfaces that are incorporated into the considered material platforms. Starting from the definition of Schwarz P minimal surface, geometric parametrizations are introduced that break spatial symmetry by forming 1D dimerized and 2D hexagonal minimal surface‐based materials. Breaking of spatial symmetries produces topologically non‐trivial interfaces that support the localization of vibrational modes and the robust propagation of elastic waves along pre‐defined paths. These dynamic properties are predicted through numerical simulations and are illustrated by performing vibration and wave propagation experiments on additively manufactured samples. The introduction of symmetry‐breaking topological interfaces through parametrizations that modify the geometry of periodic minimal surfaces suggests a new strategy to supplement the load‐bearing properties of this class of materials with novel dynamic functionalities. 
    more » « less
  4. Abstract Failure of materials and structures is inherently linked to localized mechanisms, from shear banding in metals, to crack propagation in ceramics and collapse of space‐trusses after buckling of individual struts. In lightweight structures, localized deformation causes catastrophic failure, limiting their application to small strain regimes. To ensure robustness under real‐world nonlinear loading scenarios, overdesigned linear‐elastic constructions are adopted. Here, the concept of delocalized deformation as a pathway to failure‐resistant structures and materials is introduced. Space‐tileable tensegrity metamaterials achieving delocalized deformation via the discontinuity of their compression members are presented. Unprecedented failure resistance is shown, with up to 25‐fold enhancement in deformability and orders of magnitude increased energy absorption capability without failure over same‐strength state‐of‐the‐art lattice architectures. This study provides important groundwork for design of superior engineering systems, from reusable impact protection systems to adaptive load‐bearing structures. 
    more » « less