skip to main content

Search for: All records

Creators/Authors contains: "Valencia, ed., Alfonso"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    Protein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties.

    Results

    GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhoodmore »as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.

    Availability and implementation

    All code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  2. Abstract Motivation

    Despite experimental and curation efforts, the extent of enzyme promiscuity on substrates continues to be largely unexplored and under documented. Providing computational tools for the exploration of the enzyme–substrate interaction space can expedite experimentation and benefit applications such as constructing synthesis pathways for novel biomolecules, identifying products of metabolism on ingested compounds, and elucidating xenobiotic metabolism. Recommender systems (RS), which are currently unexplored for the enzyme–substrate interaction prediction problem, can be utilized to provide enzyme recommendations for substrates, and vice versa. The performance of Collaborative-Filtering (CF) RSs; however, hinges on the quality of embedding vectors of users and items (enzymes and substrates in our case). Importantly, enhancing CF embeddings with heterogeneous auxiliary data, specially relational data (e.g. hierarchical, pairwise or groupings), remains a challenge.

    Results

    We propose an innovative general RS framework, termed Boost-RS that enhances RS performance by ‘boosting’ embedding vectors through auxiliary data. Specifically, Boost-RS is trained and dynamically tuned on multiple relevant auxiliary learning tasks Boost-RS utilizes contrastive learning tasks to exploit relational data. To show the efficacy of Boost-RS for the enzyme–substrate prediction interaction problem, we apply the Boost-RS framework to several baseline CF models. We show that each of our auxiliary tasks boosts learning ofmore »the embedding vectors, and that contrastive learning using Boost-RS outperforms attribute concatenation and multi-label learning. We also show that Boost-RS outperforms similarity-based models. Ablation studies and visualization of learned representations highlight the importance of using contrastive learning on some of the auxiliary data in boosting the embedding vectors.

    Availability and implementation

    A Python implementation for Boost-RS is provided at https://github.com/HassounLab/Boost-RS. The enzyme-substrate interaction data is available from the KEGG database (https://www.genome.jp/kegg/).

    « less
  3. Abstract Motivation

    This article introduces Vivarium—software born of the idea that it should be as easy as possible for computational biologists to define any imaginable mechanistic model, combine it with existing models and execute them together as an integrated multiscale model. Integrative multiscale modeling confronts the complexity of biology by combining heterogeneous datasets and diverse modeling strategies into unified representations. These integrated models are then run to simulate how the hypothesized mechanisms operate as a whole. But building such models has been a labor-intensive process that requires many contributors, and they are still primarily developed on a case-by-case basis with each project starting anew. New software tools that streamline the integrative modeling effort and facilitate collaboration are therefore essential for future computational biologists.

    Results

    Vivarium is a software tool for building integrative multiscale models. It provides an interface that makes individual models into modules that can be wired together in large composite models, parallelized across multiple CPUs and run with Vivarium’s discrete-event simulation engine. Vivarium’s utility is demonstrated by building composite models that combine several modeling frameworks: agent-based models, ordinary differential equations, stochastic reaction systems, constraint-based models, solid-body physics and spatial diffusion. This demonstrates just the beginning of what is possible—Vivarium willmore »be able to support future efforts that integrate many more types of models and at many more biological scales.

    Availability and implementation

    The specific models, simulation pipelines and notebooks developed for this article are all available at the vivarium-notebooks repository: https://github.com/vivarium-collective/vivarium-notebooks. Vivarium-core is available at https://github.com/vivarium-collective/vivarium-core, and has been released on Python Package Index. The Vivarium Collective (https://vivarium-collective.github.io) is a repository of freely available Vivarium processes and composites, including the processes used in Section 3. Supplementary Materials provide with an extensive methodology section, with several code listings that demonstrate the basic interfaces.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  4. Abstract Summary

    Molecular dynamics simulations have found use in a wide variety of biomolecular applications, from protein folding kinetics to computational drug design to refinement of molecular structures. Two areas where users and developers frequently need to extend the built-in capabilities of most software packages are implementing custom interactions, for instance biases derived from experimental data, and running ensembles of simulations. We present a Python high-level interface for the popular simulation package GROMACS that i) allows custom potential functions without modifying the simulation package code, ii) maintains the optimized performance of GROMACS and iii) presents an abstract interface to building and executing computational graphs that allows transparent low-level optimization of data flow and task placement. Minimal dependencies make this integrated API for the GROMACS simulation engine simple, portable and maintainable. We demonstrate this API for experimentally-driven refinement of protein conformational ensembles.

    Availability and implementation

    LGPLv2.1 source and instructions are available at https://github.com/kassonlab/gmxapi.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

  5. Abstract Motivation

    Finding driver genes that are responsible for the aberrant proliferation rate of cancer cells is informative for both cancer research and the development of targeted drugs. The established experimental and computational methods are labor-intensive. To make algorithms feasible in real clinical settings, methods that can predict driver genes using less experimental data are urgently needed.

    Results

    We designed an effective feature selection method and used Support Vector Machines (SVM) to predict the essentiality of the potential driver genes in cancer cell lines with only 10 genes as features. The accuracy of our predictions was the highest in the Broad-DREAM Gene Essentiality Prediction Challenge. We also found a set of genes whose essentiality could be predicted much more accurately than others, which we called Accurately Predicted (AP) genes. Our method can serve as a new way of assessing the essentiality of genes in cancer cells.

    Availability and implementation

    The raw data that support the findings of this study are available at Synapse. https://www.synapse.org/#! Synapse: syn2384331/wiki/62825. Source code is available at GitHub. https://github.com/GuanLab/DREAM-Gene-Essentiality-Challenge.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

  6. Abstract Motivation

    Most proteins perform their biological functions through interactions with other proteins in cells. Amino acid mutations, especially those occurring at protein interfaces, can change the stability of protein–protein interactions (PPIs) and impact their functions, which may cause various human diseases. Quantitative estimation of the binding affinity changes (ΔΔGbind) caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses.

    Results

    We present SSIPe, which combines protein interface profiles, collected from structural and sequence homology searches, with a physics-based energy function for accurate ΔΔGbind estimation. To offset the statistical limits of the PPI structure and sequence databases, amino acid-specific pseudocounts were introduced to enhance the profile accuracy. SSIPe was evaluated on large-scale experimental data containing 2204 mutations from 177 proteins, where training and test datasets were stringently separated with the sequence identity between proteins from the two datasets below 30%. The Pearson correlation coefficient between estimated and experimental ΔΔGbind was 0.61 with a root-mean-square-error of 1.93 kcal/mol, which was significantly better than the other methods. Detailed data analyses revealed that the major advantage of SSIPe over other traditional approaches lies in the novel combination of the physical energy function with the new knowledge-based interface profile. SSIPe also considerablymore »outperformed a former profile-based method (BindProfX) due to the newly introduced sequence profiles and optimized pseudocount technique that allows for consideration of amino acid-specific prior mutation probabilities.

    Availability and implementation

    Web-server/standalone program, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/SSIPe and https://github.com/tommyhuangthu/SSIPe.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  7. Abstract Motivation

    Gene lists are routinely produced from various omic studies. Enrichment analysis can link these gene lists with underlying molecular pathways and functional categories such as gene ontology (GO) and other databases.

    Results

    To complement existing tools, we developed ShinyGO based on a large annotation database derived from Ensembl and STRING-db for 59 plant, 256 animal, 115 archeal and 1678 bacterial species. ShinyGO’s novel features include graphical visualization of enrichment results and gene characteristics, and application program interface access to KEGG and STRING for the retrieval of pathway diagrams and protein–protein interaction networks. ShinyGO is an intuitive, graphical web application that can help researchers gain actionable insights from gene-sets.

    Availability and implementation

    http://ge-lab.org/go/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

  8. Abstract Motivation

    The R programming language is one of the most widely used programming languages for transforming raw genomic datasets into meaningful biological conclusions through analysis and visualization, which has been largely facilitated by infrastructure and tools developed by the Bioconductor project. However, existing plotting packages rely on relative positioning and sizing of plots, which is often sufficient for exploratory analysis but is poorly suited for the creation of publication-quality multi-panel images inherent to scientific manuscript preparation.

    Results

    We present plotgardener, a coordinate-based genomic data visualization package that offers a new paradigm for multi-plot figure generation in R. Plotgardener allows precise, programmatic control over the placement, esthetics and arrangements of plots while maximizing user experience through fast and memory-efficient data access, support for a wide variety of data and file types, and tight integration with the Bioconductor environment. Plotgardener also allows precise placement and sizing of ggplot2 plots, making it an invaluable tool for R users and data scientists from virtually any discipline.

    Availability and implementation

    Package: https://bioconductor.org/packages/plotgardener, Code: https://github.com/PhanstielLab/plotgardener, Documentation: https://phanstiellab.github.io/plotgardener/.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

  9. Abstract Motivation

    Binding-induced conformational changes challenge current computational docking algorithms by exponentially increasing the conformational space to be explored. To restrict this search to relevant space, some computational docking algorithms exploit the inherent flexibility of the protein monomers to simulate conformational selection from pre-generated ensembles. As the ensemble size expands with increased flexibility, these methods struggle with efficiency and high false positive rates.

    Results

    Here, we develop and benchmark RosettaDock 4.0, which efficiently samples large conformational ensembles of flexible proteins and docks them using a novel, six-dimensional, coarse-grained score function. A strong discriminative ability allows an eight-fold higher enrichment of near-native candidate structures in the coarse-grained phase compared to RosettaDock 3.2. It adaptively samples 100 conformations each of the ligand and the receptor backbone while increasing computational time by only 20–80%. In local docking of a benchmark set of 88 proteins of varying degrees of flexibility, the expected success rate (defined as cases with ≥50% chance of achieving 3 near-native structures in the 5 top-ranked ones) for blind predictions after resampling is 77% for rigid complexes, 49% for moderately flexible complexes and 31% for highly flexible complexes. These success rates on flexible complexes are a substantial step forward from all existing methods. Additionally,more »for highly flexible proteins, we demonstrate that when a suitable conformer generation method exists, the method successfully docks the complex.

    Availability and implementation

    As a part of the Rosetta software suite, RosettaDock 4.0 is available at https://www.rosettacommons.org to all non-commercial users for free and to commercial users for a fee.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  10. Abstract Motivation

    The interactive visualization of very large macromolecular complexes on the web is becoming a challenging problem as experimental techniques advance at an unprecedented rate and deliver structures of increasing size.

    Results

    We have tackled this problem by developing highly memory-efficient and scalable extensions for the NGL WebGL-based molecular viewer and by using Macromolecular Transmission Format (MMTF), a binary and compressed MMTF. These enable NGL to download and render molecular complexes with millions of atoms interactively on desktop computers and smartphones alike, making it a tool of choice for web-based molecular visualization in research and education.

    Availability and implementation

    The source code is freely available under the MIT license at github.com/arose/ngl and distributed on NPM (npmjs.com/package/ngl). MMTF-JavaScript encoders and decoders are available at github.com/rcsb/mmtf-javascript.