skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vandenberg, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 18, 2026
  2. Free, publicly-accessible full text available February 18, 2026
  3. Free, publicly-accessible full text available December 5, 2025
  4. Free, publicly-accessible full text available December 5, 2025
  5. With the growing prevalence of AI, the need for K-12 AI education is becoming more crucial, which is prompting active research in developing engaging and age-appropriate AI learning activities. Efforts are underway, such as those by the AI4K12 initiative, to establish guidelines for organizing K- 12 AI education; however, effective instructional resources are needed by educators. In this paper, we describe our work to design, develop, and implement an unplugged activity centered on facial recognition technology for middle school students. Facial recognition is integrated into a wide range of applications throughout daily life, which makes it a familiar and engaging tool for students and an effective medium for conveying AI concepts. Our unplugged activity, “Guess Whose Face,” is designed as a board game that focuses on Representation and Reasoning from AI4K12’s 5 Big Ideas in AI. The game is crafted to enable students to develop AI competencies naturally through physical interaction. In the game, one student uses tracing paper to extract facial features from a familiar face shown on a card, such as a cartoon character or celebrity, and then other students try to guess the identity of the hidden face. We discuss details of the game, its iterative refinement, and initial findings from piloting the activity during a summer camp for rural middle school students. 
    more » « less
  6. Free, publicly-accessible full text available July 8, 2025
  7. Identifying misconceptions in student programming solutions is an important step in evaluating their comprehension of fundamental programming concepts. While misconceptions are latent constructs that are hard to evaluate directly from student programs, logical errors can signal their existence in students’ understanding. Tracing multiple occurrences of related logical bugs over different problems can provide strong evidence of students’ misconceptions. This study presents preliminary results of utilizing an interpretable state-ofthe- art Abstract Syntax Tree-based embedding neural network to identify logical mistakes in student code. In this study, we show a proof-of-concept of the errors identified in student programs by classifying correct versus incorrect programs. Our preliminary results show that our framework is able to automatically identify misconceptions without designing and applying a detailed rubric. This approach shows promise for improving the quality of instruction in introductory programming courses by providing educators with a powerful tool that offers personalized feedback while enabling accurate modeling of student misconceptions. 
    more » « less
  8. Digital learning environments are used frequently in K-12 classrooms. Such use can require skillful orchestration as teachers need to understand the affordances of the learning environment, sequence of activities, and when and how to intervene with students. Using a digital learning environment in a multidisciplinary classroom context makes the design of support materials for teachers and students even more essential. To design for effective teacher orchestration in the classroom, we created a comprehensive set of materials for our multidisciplinary digital learning environment. We employ the design-based intervention research framework to trace the contextual and practical iterations these materials underwent. Additionally, we provide next steps for our work and considerations for the broader community. 
    more » « less